Suppr超能文献

发育动力学研究中图像的时间排序与配准。

Temporal ordering and registration of images in studies of developmental dynamics.

作者信息

Dsilva Carmeline J, Lim Bomyi, Lu Hang, Singer Amit, Kevrekidis Ioannis G, Shvartsman Stanislav Y

机构信息

Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA These authors contributed equally to this work.

School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.

出版信息

Development. 2015 May 1;142(9):1717-24. doi: 10.1242/dev.119396. Epub 2015 Apr 1.

Abstract

Progress of development is commonly reconstructed from imaging snapshots of chemical or mechanical processes in fixed tissues. As a first step in these reconstructions, snapshots must be spatially registered and ordered in time. Currently, image registration and ordering are often done manually, requiring a significant amount of expertise with a specific system. However, as the sizes of imaging data sets grow, these tasks become increasingly difficult, especially when the images are noisy and the developmental changes being examined are subtle. To address these challenges, we present an automated approach to simultaneously register and temporally order imaging data sets. The approach is based on vector diffusion maps, a manifold learning technique that does not require a priori knowledge of image features or a parametric model of the developmental dynamics. We illustrate this approach by registering and ordering data from imaging studies of pattern formation and morphogenesis in three model systems. We also provide software to aid in the application of our methodology to other experimental data sets.

摘要

发育过程通常是根据固定组织中化学或机械过程的成像快照来重建的。在这些重建的第一步中,快照必须在空间上对齐并按时间排序。目前,图像对齐和排序通常是手动完成的,这需要对特定系统有大量专业知识。然而,随着成像数据集规模的增长,这些任务变得越来越困难,尤其是当图像有噪声且所研究的发育变化很细微时。为应对这些挑战,我们提出了一种自动方法,可同时对齐成像数据集并按时间排序。该方法基于向量扩散映射,这是一种流形学习技术,不需要图像特征的先验知识或发育动力学的参数模型。我们通过对齐和排序来自三个模型系统中模式形成和形态发生成像研究的数据来说明这种方法。我们还提供了软件,以帮助将我们的方法应用于其他实验数据集。

相似文献

9
Automatic image analysis for gene expression patterns of fly embryos.果蝇胚胎基因表达模式的自动图像分析
BMC Cell Biol. 2007 Jul 10;8 Suppl 1(Suppl 1):S7. doi: 10.1186/1471-2121-8-S1-S7.
10
Bioimage Informatics in the context of Drosophila research.果蝇研究背景下的生物图像信息学。
Methods. 2014 Jun 15;68(1):60-73. doi: 10.1016/j.ymeth.2014.04.004. Epub 2014 Apr 13.

引用本文的文献

1
Uncovering developmental time and tempo using deep learning.利用深度学习揭示发育时间和节奏。
Nat Methods. 2023 Dec;20(12):2000-2010. doi: 10.1038/s41592-023-02083-8. Epub 2023 Nov 23.
6
Synthesizing developmental trajectories.合成发育轨迹。
PLoS Comput Biol. 2017 Sep 18;13(9):e1005742. doi: 10.1371/journal.pcbi.1005742. eCollection 2017 Sep.
7
Reconstruction of normal forms by learning informed observation geometries from data.从数据中学习信息感知观测几何,实现正则形式重构。
Proc Natl Acad Sci U S A. 2017 Sep 19;114(38):E7865-E7874. doi: 10.1073/pnas.1620045114. Epub 2017 Aug 22.
9
New Twists in Drosophila Cell Signaling.果蝇细胞信号传导中的新变化
J Biol Chem. 2016 Apr 8;291(15):7805-8. doi: 10.1074/jbc.R115.711473. Epub 2016 Feb 23.

本文引用的文献

9
EMAGE: Electronic Mouse Atlas of Gene Expression.EMAGE:基因表达电子小鼠图谱。
Methods Mol Biol. 2014;1092:61-79. doi: 10.1007/978-1-60327-292-6_5.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验