Suppr超能文献

发育动力学研究中图像的时间排序与配准。

Temporal ordering and registration of images in studies of developmental dynamics.

作者信息

Dsilva Carmeline J, Lim Bomyi, Lu Hang, Singer Amit, Kevrekidis Ioannis G, Shvartsman Stanislav Y

机构信息

Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA These authors contributed equally to this work.

School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.

出版信息

Development. 2015 May 1;142(9):1717-24. doi: 10.1242/dev.119396. Epub 2015 Apr 1.

Abstract

Progress of development is commonly reconstructed from imaging snapshots of chemical or mechanical processes in fixed tissues. As a first step in these reconstructions, snapshots must be spatially registered and ordered in time. Currently, image registration and ordering are often done manually, requiring a significant amount of expertise with a specific system. However, as the sizes of imaging data sets grow, these tasks become increasingly difficult, especially when the images are noisy and the developmental changes being examined are subtle. To address these challenges, we present an automated approach to simultaneously register and temporally order imaging data sets. The approach is based on vector diffusion maps, a manifold learning technique that does not require a priori knowledge of image features or a parametric model of the developmental dynamics. We illustrate this approach by registering and ordering data from imaging studies of pattern formation and morphogenesis in three model systems. We also provide software to aid in the application of our methodology to other experimental data sets.

摘要

发育过程通常是根据固定组织中化学或机械过程的成像快照来重建的。在这些重建的第一步中,快照必须在空间上对齐并按时间排序。目前,图像对齐和排序通常是手动完成的,这需要对特定系统有大量专业知识。然而,随着成像数据集规模的增长,这些任务变得越来越困难,尤其是当图像有噪声且所研究的发育变化很细微时。为应对这些挑战,我们提出了一种自动方法,可同时对齐成像数据集并按时间排序。该方法基于向量扩散映射,这是一种流形学习技术,不需要图像特征的先验知识或发育动力学的参数模型。我们通过对齐和排序来自三个模型系统中模式形成和形态发生成像研究的数据来说明这种方法。我们还提供了软件,以帮助将我们的方法应用于其他实验数据集。

相似文献

1
Temporal ordering and registration of images in studies of developmental dynamics.
Development. 2015 May 1;142(9):1717-24. doi: 10.1242/dev.119396. Epub 2015 Apr 1.
2
Toward high-content/high-throughput imaging and analysis of embryonic morphogenesis.
Genesis. 2011 Jul;49(7):555-69. doi: 10.1002/dvg.20760. Epub 2011 Jun 24.
3
TLM-Converter: reorganization of long time-lapse microscopy datasets for downstream image analysis.
Biotechniques. 2011 Jul;51(1):49-50, 52-3. doi: 10.2144/000113704.
4
A mesh generation and machine learning framework for Drosophila gene expression pattern image analysis.
BMC Bioinformatics. 2013 Dec 28;14:372. doi: 10.1186/1471-2105-14-372.
5
Automatic identification and clustering of chromosome phenotypes in a genome wide RNAi screen by time-lapse imaging.
J Struct Biol. 2010 Apr;170(1):1-9. doi: 10.1016/j.jsb.2009.10.004. Epub 2009 Oct 23.
6
Spectral embedding finds meaningful (relevant) structure in image and microarray data.
BMC Bioinformatics. 2006 Feb 16;7:74. doi: 10.1186/1471-2105-7-74.
8
Joint stage recognition and anatomical annotation of Drosophila gene expression patterns.
Bioinformatics. 2012 Jun 15;28(12):i16-24. doi: 10.1093/bioinformatics/bts220.
9
Automatic image analysis for gene expression patterns of fly embryos.
BMC Cell Biol. 2007 Jul 10;8 Suppl 1(Suppl 1):S7. doi: 10.1186/1471-2121-8-S1-S7.
10
Bioimage Informatics in the context of Drosophila research.
Methods. 2014 Jun 15;68(1):60-73. doi: 10.1016/j.ymeth.2014.04.004. Epub 2014 Apr 13.

引用本文的文献

1
Uncovering developmental time and tempo using deep learning.
Nat Methods. 2023 Dec;20(12):2000-2010. doi: 10.1038/s41592-023-02083-8. Epub 2023 Nov 23.
3
An Emergent Space for Distributed Data with Hidden Internal Order through Manifold Learning.
IEEE Access. 2018;6:77402-77413. doi: 10.1109/access.2018.2882777. Epub 2018 Nov 22.
4
Data-driven Evolution Equation Reconstruction for Parameter-Dependent Nonlinear Dynamical Systems.
Isr J Chem. 2018 Jun;58(6-7):787-794. doi: 10.1002/ijch.201700147. Epub 2018 Apr 6.
5
Quantitative analysis of cell shape and the cytoskeleton in developmental biology.
Wiley Interdiscip Rev Dev Biol. 2018 Nov;7(6):e333. doi: 10.1002/wdev.333. Epub 2018 Aug 31.
6
Synthesizing developmental trajectories.
PLoS Comput Biol. 2017 Sep 18;13(9):e1005742. doi: 10.1371/journal.pcbi.1005742. eCollection 2017 Sep.
7
Reconstruction of normal forms by learning informed observation geometries from data.
Proc Natl Acad Sci U S A. 2017 Sep 19;114(38):E7865-E7874. doi: 10.1073/pnas.1620045114. Epub 2017 Aug 22.
8
Reconstructing ERK Signaling in the Drosophila Embryo from Fixed Images.
Methods Mol Biol. 2017;1487:337-351. doi: 10.1007/978-1-4939-6424-6_25.
9
New Twists in Drosophila Cell Signaling.
J Biol Chem. 2016 Apr 8;291(15):7805-8. doi: 10.1074/jbc.R115.711473. Epub 2016 Feb 23.
10
A Transport Model for Estimating the Time Course of ERK Activation in the C. elegans Germline.
Biophys J. 2015 Dec 1;109(11):2436-45. doi: 10.1016/j.bpj.2015.10.021.

本文引用的文献

1
The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells.
Nat Biotechnol. 2014 Apr;32(4):381-386. doi: 10.1038/nbt.2859. Epub 2014 Mar 23.
2
Rotationally invariant image representation for viewing direction classification in cryo-EM.
J Struct Biol. 2014 Apr;186(1):153-66. doi: 10.1016/j.jsb.2014.03.003. Epub 2014 Mar 12.
4
BLIND ordering of large-scale transcriptomic developmental timecourses.
Development. 2014 Mar;141(5):1161-6. doi: 10.1242/dev.105288. Epub 2014 Feb 6.
5
Diffusion methods for aligning medical datasets: location prediction in CT scan images.
Med Image Anal. 2014 Feb;18(2):425-32. doi: 10.1016/j.media.2013.12.009. Epub 2014 Jan 8.
6
Eigenvector synchronization, graph rigidity and the molecule problem.
Inf inference. 2012 Dec;1(1):21. doi: 10.1093/imaiai/ias002.
7
Vector Diffusion Maps and the Connection Laplacian.
Commun Pure Appl Math. 2012 Aug;65(8). doi: 10.1002/cpa.21395.
8
Nonlinear intrinsic variables and state reconstruction in multiscale simulations.
J Chem Phys. 2013 Nov 14;139(18):184109. doi: 10.1063/1.4828457.
9
EMAGE: Electronic Mouse Atlas of Gene Expression.
Methods Mol Biol. 2014;1092:61-79. doi: 10.1007/978-1-60327-292-6_5.
10
Automated annotation of developmental stages of Drosophila embryos in images containing spatial patterns of expression.
Bioinformatics. 2014 Jan 15;30(2):266-73. doi: 10.1093/bioinformatics/btt648. Epub 2013 Dec 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验