Suppr超能文献

可定向性与扩散映射

Orientability and Diffusion Maps.

作者信息

Singer Amit, Wu Hau-Tieng

机构信息

Department of Mathematics and PACM, Princeton University, Fine Hall, Washington Road, Princeton NJ 08544-1000 USA.

出版信息

Appl Comput Harmon Anal. 2011 Jul;31(1):44-58. doi: 10.1016/j.acha.2010.10.001.

Abstract

One of the main objectives in the analysis of a high dimensional large data set is to learn its geometric and topological structure. Even though the data itself is parameterized as a point cloud in a high dimensional ambient space ℝ(p), the correlation between parameters often suggests the "manifold assumption" that the data points are distributed on (or near) a low dimensional Riemannian manifold ℳ(d) embedded in ℝ(p), with d ≪ p. We introduce an algorithm that determines the orientability of the intrinsic manifold given a sufficiently large number of sampled data points. If the manifold is orientable, then our algorithm also provides an alternative procedure for computing the eigenfunctions of the Laplacian that are important in the diffusion map framework for reducing the dimensionality of the data. If the manifold is non-orientable, then we provide a modified diffusion mapping of its orientable double covering.

摘要

分析高维大数据集的主要目标之一是了解其几何和拓扑结构。尽管数据本身被参数化为高维环境空间ℝ(p)中的点云,但参数之间的相关性通常暗示了“流形假设”,即数据点分布在嵌入于ℝ(p)中的低维黎曼流形ℳ(d)上(或其附近),其中d远小于p。我们引入一种算法,在给定足够数量的采样数据点的情况下确定内在流形的可定向性。如果流形是可定向的,那么我们的算法还提供了一种替代方法来计算拉普拉斯算子的本征函数,这些本征函数在用于降低数据维度的扩散映射框架中很重要。如果流形是不可定向的,那么我们提供其可定向双覆盖的修正扩散映射。

相似文献

1
Orientability and Diffusion Maps.
Appl Comput Harmon Anal. 2011 Jul;31(1):44-58. doi: 10.1016/j.acha.2010.10.001.
2
Riemannian manifold learning.
IEEE Trans Pattern Anal Mach Intell. 2008 May;30(5):796-809. doi: 10.1109/TPAMI.2007.70735.
3
Vector Diffusion Maps and the Connection Laplacian.
Commun Pure Appl Math. 2012 Aug;65(8). doi: 10.1002/cpa.21395.
4
Wilder manifolds are locally orientable.
Proc Natl Acad Sci U S A. 1969 Aug;63(4):1079-81. doi: 10.1073/pnas.63.4.1079.
5
Contagion Dynamics for Manifold Learning.
Front Big Data. 2022 Apr 26;5:668356. doi: 10.3389/fdata.2022.668356. eCollection 2022.
6
Discriminant Analysis on Riemannian Manifold of Gaussian Distributions for Face Recognition With Image Sets.
IEEE Trans Image Process. 2018;27(1):151-163. doi: 10.1109/TIP.2017.2746993.
7
Bi-stochastically normalized graph Laplacian: convergence to manifold Laplacian and robustness to outlier noise.
Inf inference. 2024 Sep 20;13(4):iaae026. doi: 10.1093/imaiai/iaae026. eCollection 2024 Dec.

引用本文的文献

1
Geometric Scattering on Measure Spaces.
Appl Comput Harmon Anal. 2024 May;70. doi: 10.1016/j.acha.2024.101635. Epub 2024 Feb 6.
3
LDLE: Low Distortion Local Eigenmaps.
J Mach Learn Res. 2021 Jan-Dec;22.
4
Vector Diffusion Maps and the Connection Laplacian.
Commun Pure Appl Math. 2012 Aug;65(8). doi: 10.1002/cpa.21395.
5
Sensor Network Localization by Eigenvector Synchronization Over the Euclidean Group.
ACM Trans Sens Netw. 2012 Jul;8(3). doi: 10.1145/2240092.2240093.

本文引用的文献

1
Sensor Network Localization by Eigenvector Synchronization Over the Euclidean Group.
ACM Trans Sens Netw. 2012 Jul;8(3). doi: 10.1145/2240092.2240093.
2
Least-squares fitting of two 3-d point sets.
IEEE Trans Pattern Anal Mach Intell. 1987 May;9(5):698-700. doi: 10.1109/tpami.1987.4767965.
3
Angular Synchronization by Eigenvectors and Semidefinite Programming.
Appl Comput Harmon Anal. 2011 Jan 30;30(1):20-36. doi: 10.1016/j.acha.2010.02.001.
4
Hessian eigenmaps: locally linear embedding techniques for high-dimensional data.
Proc Natl Acad Sci U S A. 2003 May 13;100(10):5591-6. doi: 10.1073/pnas.1031596100. Epub 2003 Apr 30.
5
Nonlinear dimensionality reduction by locally linear embedding.
Science. 2000 Dec 22;290(5500):2323-6. doi: 10.1126/science.290.5500.2323.
6
A global geometric framework for nonlinear dimensionality reduction.
Science. 2000 Dec 22;290(5500):2319-23. doi: 10.1126/science.290.5500.2319.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验