Suppr超能文献

可定向性与扩散映射

Orientability and Diffusion Maps.

作者信息

Singer Amit, Wu Hau-Tieng

机构信息

Department of Mathematics and PACM, Princeton University, Fine Hall, Washington Road, Princeton NJ 08544-1000 USA.

出版信息

Appl Comput Harmon Anal. 2011 Jul;31(1):44-58. doi: 10.1016/j.acha.2010.10.001.

Abstract

One of the main objectives in the analysis of a high dimensional large data set is to learn its geometric and topological structure. Even though the data itself is parameterized as a point cloud in a high dimensional ambient space ℝ(p), the correlation between parameters often suggests the "manifold assumption" that the data points are distributed on (or near) a low dimensional Riemannian manifold ℳ(d) embedded in ℝ(p), with d ≪ p. We introduce an algorithm that determines the orientability of the intrinsic manifold given a sufficiently large number of sampled data points. If the manifold is orientable, then our algorithm also provides an alternative procedure for computing the eigenfunctions of the Laplacian that are important in the diffusion map framework for reducing the dimensionality of the data. If the manifold is non-orientable, then we provide a modified diffusion mapping of its orientable double covering.

摘要

分析高维大数据集的主要目标之一是了解其几何和拓扑结构。尽管数据本身被参数化为高维环境空间ℝ(p)中的点云,但参数之间的相关性通常暗示了“流形假设”,即数据点分布在嵌入于ℝ(p)中的低维黎曼流形ℳ(d)上(或其附近),其中d远小于p。我们引入一种算法,在给定足够数量的采样数据点的情况下确定内在流形的可定向性。如果流形是可定向的,那么我们的算法还提供了一种替代方法来计算拉普拉斯算子的本征函数,这些本征函数在用于降低数据维度的扩散映射框架中很重要。如果流形是不可定向的,那么我们提供其可定向双覆盖的修正扩散映射。

相似文献

1
Orientability and Diffusion Maps.可定向性与扩散映射
Appl Comput Harmon Anal. 2011 Jul;31(1):44-58. doi: 10.1016/j.acha.2010.10.001.
2
Riemannian manifold learning.黎曼流形学习
IEEE Trans Pattern Anal Mach Intell. 2008 May;30(5):796-809. doi: 10.1109/TPAMI.2007.70735.
4
Wilder manifolds are locally orientable.怀尔德流形是局部可定向的。
Proc Natl Acad Sci U S A. 1969 Aug;63(4):1079-81. doi: 10.1073/pnas.63.4.1079.
5
Contagion Dynamics for Manifold Learning.用于流形学习的传染动力学
Front Big Data. 2022 Apr 26;5:668356. doi: 10.3389/fdata.2022.668356. eCollection 2022.

本文引用的文献

2
Least-squares fitting of two 3-d point sets.最小二乘拟合两个三维点集。
IEEE Trans Pattern Anal Mach Intell. 1987 May;9(5):698-700. doi: 10.1109/tpami.1987.4767965.
3
Angular Synchronization by Eigenvectors and Semidefinite Programming.基于特征向量和半定规划的角度同步
Appl Comput Harmon Anal. 2011 Jan 30;30(1):20-36. doi: 10.1016/j.acha.2010.02.001.
4
Hessian eigenmaps: locally linear embedding techniques for high-dimensional data.黑森特征映射:用于高维数据的局部线性嵌入技术。
Proc Natl Acad Sci U S A. 2003 May 13;100(10):5591-6. doi: 10.1073/pnas.1031596100. Epub 2003 Apr 30.
5
Nonlinear dimensionality reduction by locally linear embedding.通过局部线性嵌入进行非线性降维
Science. 2000 Dec 22;290(5500):2323-6. doi: 10.1126/science.290.5500.2323.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验