Zelesko Nathan, Moscovich Amit, Kileel Joe, Singer Amit
Department of Mathematics, Brown University.
Program in Applied and Computational Mathematics, Princeton University.
Proc IEEE Int Symp Biomed Imaging. 2020 Apr;2020:1715-1719. doi: 10.1109/isbi45749.2020.9098723. Epub 2020 May 22.
In this paper, we propose a novel approach for manifold learning that combines the Earthmover's distance (EMD) with the diffusion maps method for dimensionality reduction. We demonstrate the potential benefits of this approach for learning shape spaces of proteins and other flexible macromolecules using a simulated dataset of 3-D density maps that mimic the non-uniform rotary motion of ATP synthase. Our results show that EMD-based diffusion maps require far fewer samples to recover the intrinsic geometry than the standard diffusion maps algorithm that is based on the Euclidean distance. To reduce the computational burden of calculating the EMD for all volume pairs, we employ a wavelet-based approximation to the EMD which reduces the computation of the pairwise EMDs to a computation of pairwise weighted- distances between wavelet coefficient vectors.
在本文中,我们提出了一种用于流形学习的新方法,该方法将推土机距离(EMD)与扩散映射方法相结合以进行降维。我们使用模拟的三维密度图数据集展示了这种方法在学习蛋白质和其他柔性大分子形状空间方面的潜在优势,该数据集模拟了ATP合酶的非均匀旋转运动。我们的结果表明,基于EMD的扩散映射比基于欧几里得距离的标准扩散映射算法需要少得多的样本就能恢复内在几何结构。为了减轻计算所有体积对之间EMD的计算负担,我们采用了基于小波的EMD近似方法,该方法将成对EMD的计算简化为小波系数向量之间成对加权距离的计算。