Suppr超能文献

分析潜在状态-特质和多指标潜在增长曲线模型作为多层次结构方程模型。

Analyzing latent state-trait and multiple-indicator latent growth curve models as multilevel structural equation models.

机构信息

Department of Psychology, Utah State University Logan, UT, USA.

Department of Psychology, University of Pittsburgh Pittsburgh, PA, USA.

出版信息

Front Psychol. 2013 Dec 30;4:975. doi: 10.3389/fpsyg.2013.00975. eCollection 2013.

Abstract

Latent state-trait (LST) and latent growth curve (LGC) models are frequently used in the analysis of longitudinal data. Although it is well-known that standard single-indicator LGC models can be analyzed within either the structural equation modeling (SEM) or multilevel (ML; hierarchical linear modeling) frameworks, few researchers realize that LST and multivariate LGC models, which use multiple indicators at each time point, can also be specified as ML models. In the present paper, we demonstrate that using the ML-SEM rather than the SL-SEM framework to estimate the parameters of these models can be practical when the study involves (1) a large number of time points, (2) individually-varying times of observation, (3) unequally spaced time intervals, and/or (4) incomplete data. Despite the practical advantages of the ML-SEM approach under these circumstances, there are also some limitations that researchers should consider. We present an application to an ecological momentary assessment study (N = 158 youths with an average of 23.49 observations of positive mood per person) using the software Mplus (Muthén and Muthén, 1998-2012) and discuss advantages and disadvantages of using the ML-SEM approach to estimate the parameters of LST and multiple-indicator LGC models.

摘要

潜状态-特质(LST)和潜在增长曲线(LGC)模型常用于分析纵向数据。尽管众所周知,标准的单指标 LGC 模型可以在结构方程建模(SEM)或多层次(ML;层次线性建模)框架内进行分析,但很少有研究人员意识到,使用多个指标在每个时间点的 LST 和多变量 LGC 模型也可以指定为 ML 模型。在本文中,我们证明了当研究涉及(1)大量时间点,(2)个体观察时间的变化,(3)不等间隔的时间间隔,和/或(4)数据不完整时,使用 ML-SEM 而不是 SL-SEM 框架来估计这些模型的参数是实用的。尽管在这些情况下 ML-SEM 方法具有实际优势,但研究人员也应该考虑一些限制。我们使用 Mplus 软件(Muthén 和 Muthén,1998-2012)对一个生态瞬间评估研究(N = 158 名青少年,每人平均有 23.49 次积极情绪观察)进行了应用,并讨论了使用 ML-SEM 方法估计 LST 和多指标 LGC 模型参数的优缺点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/32a6/3874722/a6b4ffc982ba/fpsyg-04-00975-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验