Department of Psychology, Arizona State University, USA.
Psychol Methods. 2012 Jun;17(2):255-83. doi: 10.1037/a0026977. Epub 2012 Feb 6.
Latent state-trait (LST) analysis is frequently applied in psychological research to determine the degree to which observed scores reflect stable person-specific effects, effects of situations and/or person-situation interactions, and random measurement error. Most LST applications use multiple repeatedly measured observed variables as indicators of latent trait and latent state residual factors. In practice, such indicators often show shared indicator-specific (or method) variance over time. In this article, the authors compare 4 approaches to account for such method effects in LST models and discuss the strengths and weaknesses of each approach based on theoretical considerations, simulations, and applications to actual data sets. The simulation study revealed that the LST model with indicator-specific traits (Eid, 1996) and the LST model with M - 1 correlated method factors (Eid, Schneider, & Schwenkmezger, 1999) performed well, whereas the model with M orthogonal method factors used in the early work of Steyer, Ferring, and Schmitt (1992) and the correlated uniqueness approach (Kenny, 1976) showed limitations under conditions of either low or high method-specificity. Recommendations for the choice of an appropriate model are provided.
潜在状态-特质(LST)分析常用于心理研究,以确定观察分数反映稳定的个体特定效应、情境效应和/或个体-情境相互作用以及随机测量误差的程度。大多数 LST 应用程序使用多个重复测量的观察变量作为潜在特质和潜在状态残差因素的指标。在实践中,这些指标通常随着时间的推移表现出共享指标特定(或方法)方差。在本文中,作者比较了 4 种方法来解释 LST 模型中的这种方法效应,并基于理论考虑、模拟和对实际数据集的应用讨论了每种方法的优缺点。模拟研究表明,具有指标特定特质的 LST 模型(Eid,1996)和具有 M-1 相关方法因素的 LST 模型(Eid、Schneider 和 Schwenkmezger,1999)表现良好,而早期 Steyer、Ferring 和 Schmitt(1992)使用的具有 M 个正交方法因素的模型和相关独特性方法(Kenny,1976)在方法特定性低或高的情况下表现出局限性。提供了选择适当模型的建议。