Departamento de Genética, Universidad de Córdoba, Córdoba, Spain ; Campus de Excelencia Agroalimentario (ceiA3), Córdoba, Spain.
Centro de Investigaciones Biológicas-CSIC, Madrid, Spain.
PLoS One. 2013 Dec 27;8(12):e84690. doi: 10.1371/journal.pone.0084690. eCollection 2013.
With the aim to decipher the molecular dialogue and cross talk between Fusarium oxysporum f.sp. lycopersci and its host during infection and to understand the molecular bases that govern fungal pathogenicity, we analysed genes presumably encoding N-acetylglucosaminyl transferases, involved in glycosylation of glycoproteins, glycolipids, proteoglycans or small molecule acceptors in other microorganisms. In silico analysis revealed the existence of seven putative N-glycosyl transferase encoding genes (named gnt) in F. oxysporum f.sp. lycopersici genome. gnt2 deletion mutants showed a dramatic reduction in virulence on both plant and animal hosts. Δgnt2 mutants had αalterations in cell wall properties related to terminal αor β-linked N-acetyl glucosamine. Mutant conidia and germlings also showed differences in structure and physicochemical surface properties. Conidial and hyphal aggregation differed between the mutant and wild type strains, in a pH independent manner. Transmission electron micrographs of germlings showed strong cell-to-cell adherence and the presence of an extracellular chemical matrix. Δgnt2 cell walls presented a significant reduction in N-linked oligosaccharides, suggesting the involvement of Gnt2 in N-glycosylation of cell wall proteins. Gnt2 was localized in Golgi-like sub-cellular compartments as determined by fluorescence microscopy of GFP::Gnt2 fusion protein after treatment with the antibiotic brefeldin A or by staining with fluorescent sphingolipid BODIPY-TR ceramide. Furthermore, density gradient ultracentrifugation allowed co-localization of GFP::Gnt2 fusion protein and Vps10p in subcellular fractions enriched in Golgi specific enzymatic activities. Our results suggest that N-acetylglucosaminyl transferases are key components for cell wall structure and influence interactions of F. oxysporum with both plant and animal hosts during pathogenicity.
为了解析番茄枯萎病菌与其宿主在感染过程中的分子对话和串扰,并理解控制真菌致病性的分子基础,我们分析了推测编码 N-乙酰氨基葡萄糖基转移酶的基因,这些基因参与糖蛋白、糖脂、蛋白聚糖或其他微生物中小分子受体的糖基化。计算机分析显示,番茄枯萎病菌基因组中存在 7 个假定的 N-糖基转移酶编码基因(命名为 gnt)。gnt2 缺失突变体在植物和动物宿主上的毒力显著降低。Δgnt2 突变体细胞壁性质发生改变,与末端α或β连接的 N-乙酰葡萄糖胺有关。突变体分生孢子和芽管在结构和理化表面性质上也存在差异。突变体和野生型菌株之间的分生孢子和菌丝聚集存在差异,这种差异与 pH 无关。芽管的透射电子显微镜照片显示出强烈的细胞间粘附和存在细胞外化学基质。Δgnt2 细胞壁中 N-连接寡糖显著减少,表明 Gnt2 参与细胞壁蛋白的 N-糖基化。通过用抗生素布雷菲德菌素 A 处理 GFP::Gnt2 融合蛋白或用荧光鞘氨醇 BODIPY-TR 神经酰胺染色后,荧光显微镜观察到 Gnt2 定位于高尔基体样亚细胞区室,通过密度梯度超速离心,GFP::Gnt2 融合蛋白和 Vps10p 在富含高尔基体特异性酶活性的亚细胞部分共定位。我们的结果表明,N-乙酰氨基葡萄糖基转移酶是细胞壁结构的关键组成部分,并影响番茄枯萎病菌与植物和动物宿主在致病性过程中的相互作用。