Suppr超能文献

使用多通道线性阵列对医用加速器中的动态楔形角进行多能量验证。

Multienergetic verification of dynamic wedge angles in medical accelerators using multichannel linear array.

作者信息

Kowalik Anna, Litoborski Marcin

机构信息

The Greater Poland Cancer Centre, Garbary 15, 61-866 Poznań, Poland.

出版信息

Rep Pract Oncol Radiother. 2013 May 23;18(4):220-34. doi: 10.1016/j.rpor.2013.04.029. eCollection 2013.

Abstract

BACKGROUND

The aim of the modern radiotherapy is to get a homogenous dose distribution in PTV, which is obtained by using for example physical or dynamic wedges. The using of a physical wedge has provided such isodose distributions but their use resulted in detrimental dosimetric consequences, for example beam hardening effects and practical consequences of filter handling or possible misalignment. Linear accelerators are now equipped with collimator jaws systems and controlled by modern computers and it is possible to generate wedge shaped isodose distributions dynamically. Because of a more comfortable use of a dynamic wedge, there are alternatives to the standard physical wedge. During the treatment, different segments of the treatment field can be exposed to the primary beam at different intervals of time. This process of shrinking the field while modulating the collimator jaw velocity and dose rate creates the desired wedge-shaped isodose gradient across the treatment field. Dynamic wedges can replace physical wedges but they need more precise dosimetry and quality control procedures.

AIM

The aim of this study was to perform a multienergetic verification of dynamic wedge angles using the multichannel detector PTW LA48 linear array.

MATERIAL AND METHODS

The measurements of angle value of dynamic wedges were performed for Clinac 2300 C/D accelerators (Varian). The accelerator was equipped with the EDW option for 6 MV and 15 MV photon beams. In this case, 7 wedge angle values were used: 10°, 15°, 20°, 25°, 30°, 45° and 60°. The dynamic wedges are realized by continuous movement of one collimator jaw. The field size is gradually reduced until the collimator is almost completely closed or the field increases, while the beam is on. The measurements were divided in two steps: in the first step, the dynamic wedges were verified with the recommended values and in the second step there the planned and measured angles of dynamic wedges were compared. Measurements were made by means of LA48 linear array of ionization chambers (PTW). The results of the measurements were compared with the reference profile produced by the treatment planning system ECLIPSE 8.5 (Varian).

RESULTS

The results showed differences between measured and calculated angle of dynamic wedges. The differences were observed for both energies in the case of a small angle value. For energies 6 MV and 15 MV, almost all percentage difference between the measured and calculated profile was lower than 5%. The biggest difference was observed in the first step of measurements when the angle of Dynamic Wedge was verified. The comparison between the planned and measured angle value of Dynamic Wedge showed the difference between 0.1% and 4.5%. The difference for 6 MV for the angle value of 10° in orientation IN was 1.1% and for energy 15 MV in the same case the difference was 3.8%. Thinner wedges exhibit less difference.

CONCLUSION

It is necessary to provide comprehensive quality control procedure for enhanced dynamic wedges. Verification measurements should be an obligatory procedure in the recommendation for the testing of medical accelerators. These results are the preliminary results to provide measurements in other Polish Cancer Centres.

摘要

背景

现代放射治疗的目标是在计划靶体积(PTV)中获得均匀的剂量分布,这可通过使用例如物理楔形板或动态楔形板来实现。物理楔形板的使用提供了这样的等剂量分布,但其使用会导致有害的剂量学后果,例如射束硬化效应以及滤过器处理的实际问题或可能的对准误差。直线加速器现在配备了准直器钳口系统并由现代计算机控制,并且有可能动态生成楔形等剂量分布。由于动态楔形板使用起来更方便,因此有替代标准物理楔形板的方法。在治疗过程中,治疗野的不同部分可以在不同的时间间隔内接受原射线照射。通过在调制准直器钳口速度和剂量率的同时缩小射野的这一过程,在整个治疗野上产生所需的楔形等剂量梯度。动态楔形板可以替代物理楔形板,但它们需要更精确的剂量学和质量控制程序。

目的

本研究的目的是使用多通道探测器PTW LA48线性阵列对动态楔形角进行多能量验证。

材料与方法

对Clinac 2300 C/D加速器(瓦里安公司)的动态楔形角值进行测量。该加速器配备了用于6兆伏和15兆伏光子束的电子动态楔形(EDW)选项。在这种情况下,使用了7个楔形角值:10°、15°、20°、25°、30°、45°和60°。动态楔形板通过一个准直器钳口的连续移动来实现。射野尺寸逐渐减小,直到准直器几乎完全关闭,或者在射线开启时射野增大。测量分为两步:第一步,将动态楔形板与推荐值进行验证;第二步,比较动态楔形板的计划角度和测量角度。测量通过电离室的LA48线性阵列(PTW)进行。将测量结果与治疗计划系统ECLIPSE 8.5(瓦里安公司)生成的参考轮廓进行比较。

结果

结果显示动态楔形板的测量角度与计算角度之间存在差异。在小角度值的情况下,两种能量下均观察到差异。对于6兆伏和15兆伏的能量,测量轮廓与计算轮廓之间的几乎所有百分比差异均低于5%。在测量的第一步,即验证动态楔形角时,观察到最大差异。动态楔形板的计划角度值与测量角度值之间的比较显示差异在0.1%至4.5%之间。在6兆伏、方向IN、角度值为10°时差异为1.1%,在相同情况下15兆伏能量时差异为3.8%。较薄的楔形板差异较小。

结论

有必要为增强型动态楔形板提供全面的质量控制程序。验证测量应成为医用加速器测试建议中的一项强制性程序。这些结果是在波兰其他癌症中心进行测量的初步结果。

相似文献

1
Multienergetic verification of dynamic wedge angles in medical accelerators using multichannel linear array.
Rep Pract Oncol Radiother. 2013 May 23;18(4):220-34. doi: 10.1016/j.rpor.2013.04.029. eCollection 2013.
3
Surface and peripheral doses of dynamic and physical wedges.
Int J Radiat Oncol Biol Phys. 1997 Mar 1;37(4):921-5. doi: 10.1016/s0360-3016(96)00610-4.
4
Comparison of dosimetric characteristics of physical and enhanced dynamic wedges.
Rep Pract Oncol Radiother. 2011 Aug 15;17(1):4-12. doi: 10.1016/j.rpor.2011.06.007. eCollection 2011.
5
Dosimetric aspects of physical and dynamic wedge of Clinac 2100C linear accelerator.
Strahlenther Onkol. 1997 Oct;173(10):524-8. doi: 10.1007/BF03038469.
6
Studying wedge factors and beam profiles for physical and enhanced dynamic wedges.
J Med Phys. 2010 Jan;35(1):33-41. doi: 10.4103/0971-6203.57116.
7
Multiple machine implementation of enhanced dynamic wedge.
Int J Radiat Oncol Biol Phys. 1998 Mar 1;40(4):977-85. doi: 10.1016/s0360-3016(97)00916-4.
8
Dosimetric characteristics of wedges mounted beyond the blocking tray.
Med Phys. 1992 Jan-Feb;19(1):187-94. doi: 10.1118/1.596876.

本文引用的文献

1
The importance of accurate treatment planning, delivery, and dose verification.
Rep Pract Oncol Radiother. 2012 Mar 6;17(2):63-5. doi: 10.1016/j.rpor.2012.02.001. eCollection 2012.
2
Comparison of dosimetric characteristics of physical and enhanced dynamic wedges.
Rep Pract Oncol Radiother. 2011 Aug 15;17(1):4-12. doi: 10.1016/j.rpor.2011.06.007. eCollection 2011.
4
Evaluation of a diode detector array for measurement of dynamic wedge dose distributions.
Med Phys. 1993 Mar-Apr;20(2 Pt 1):381-2. doi: 10.1118/1.597165.
5
Dosimetry and clinical implementation of dynamic wedge.
Int J Radiat Oncol Biol Phys. 1995 Feb 1;31(3):583-92. doi: 10.1016/0360-3016(94)00369-V.
6
7
Conventions for wedge filter specifications.
Br J Radiol. 1972 Nov;45(539):868. doi: 10.1259/0007-1285-45-539-868-a.
8
Wedge-shaped dose distributions by computer-controlled collimator motion.
Med Phys. 1978 Sep-Oct;5(5):426-9. doi: 10.1118/1.594440.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验