Suppr超能文献

似真性追踪:一种评估沿纤维束的解剖连接性和微观结构特性的方法。

Plausibility Tracking: a method to evaluate anatomical connectivity and microstructural properties along fiber pathways.

作者信息

Schreiber Jan, Riffert Till, Anwander Alfred, Knösche Thomas R

机构信息

Max Planck Institute for Human Cognitive and Brain Sciences, Cortical Networks and Cognitive Functions, Leipzig, Germany.

Max Planck Institute for Human Cognitive and Brain Sciences, Cortical Networks and Cognitive Functions, Leipzig, Germany.

出版信息

Neuroimage. 2014 Apr 15;90:163-78. doi: 10.1016/j.neuroimage.2014.01.002. Epub 2014 Jan 11.

Abstract

Diffusion MRI is a non-invasive method that potentially gives insight into the brain's white matter structure regarding the pathway of connections and properties of the axons. Here, we propose a novel global tractography method named Plausibility Tracking that provides the most plausible pathway, modeled as a smooth spline curve, between two locations in the brain. Compared to other tractography methods, plausibility tracking combines the more complete connectivity pattern of probabilistic tractography with smooth tracks that are globally optimized using the fiber orientation density function and hence is relatively robust against local noise and error propagation. It has been tested on phantom and biological data and compared to other methods of tractography. Plausibility tracking provides reliable local directions all along the fiber pathways which makes it especially interesting for tract-based analysis in combination with direction dependent indices of diffusion MRI. In order to demonstrate this potential of plausibility tracking, we propose a framework for the assessment and comparison of diffusion derived tissue properties. This framework comprises atlas-guided parameterization of tract representation and advanced bundle-specific indices describing fiber density, fiber spread and white matter complexity. We explore the new method using real data and show that it allows for a more specific interpretation of the white matter's microstructure compared to rotationally invariant indices derived from the diffusion tensor.

摘要

扩散磁共振成像(Diffusion MRI)是一种非侵入性方法,它有可能深入了解大脑白质结构中有关连接通路和轴突特性的信息。在此,我们提出一种名为似然性追踪(Plausibility Tracking)的全新全局纤维束成像方法,该方法能在大脑中的两个位置之间提供最似然的通路,将其建模为一条平滑样条曲线。与其他纤维束成像方法相比,似然性追踪将概率性纤维束成像更完整的连接模式与利用纤维方向密度函数进行全局优化的平滑轨迹相结合,因此相对更能抵御局部噪声和误差传播。它已在体模和生物数据上进行了测试,并与其他纤维束成像方法进行了比较。似然性追踪能沿纤维通路全程提供可靠的局部方向,这使其在与扩散磁共振成像的方向依赖性指标相结合进行基于纤维束的分析时尤其具有吸引力。为了证明似然性追踪的这种潜力,我们提出了一个用于评估和比较扩散衍生组织特性的框架。该框架包括纤维束表示的图谱引导参数化以及描述纤维密度、纤维扩散和白质复杂性的先进的特定纤维束指标。我们使用真实数据探索了这种新方法,并表明与从扩散张量得出的旋转不变指标相比,它能对白质微观结构进行更具体的解释。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验