Institut de Ciència de Materials de Barcelona ICMAB, Consejo Superior de Investigaciones Científicas CSIC, Campus UAB 08193 Bellaterra, Catalonia, Spain.
Chem Soc Rev. 2014 Apr 7;43(7):2200-25. doi: 10.1039/c3cs60365b. Epub 2014 Jan 14.
Self-assembly of oxides as a bottom-up approach to functional nanostructures goes beyond the conventional nanostructure formation based on lithographic techniques. Particularly, chemical solution deposition (CSD) is an ex situ growth approach very promising for high throughput nanofabrication at low cost. Whereas strain engineering as a strategy to define nanostructures with tight control of size, shape and orientation has been widely used in metals and semiconductors, it has been rarely explored in the emergent field of functional complex oxides. Here we will show that thermodynamic modeling can be very useful to understand the principles controlling the growth of oxide nanostructures by CSD, and some attractive kinetic features will also be presented. The methodology of strain engineering is applied in a high degree of detail to form different sorts of nanostructures (nanodots, nanowires) of the oxide CeO2 with fluorite structure which then is used as a model system to identify the principles controlling self-assembly and self-organization in CSD grown oxides. We also present, more briefly, the application of these ideas to other oxides such as manganites or BaZrO3. We will show that the nucleation and growth steps are essentially understood and manipulated while the kinetic phenomena underlying the evolution of the self-organized networks are still less widely explored, even if very appealing effects have been already observed. Overall, our investigation based on a CSD approach has opened a new strategy towards a general use of self-assembly and self-organization which can now be widely spread to many functional oxide materials.
氧化物的自组装作为一种自下而上的方法来构建功能纳米结构,超越了基于光刻技术的传统纳米结构形成方法。特别是,化学溶液沉积(CSD)是一种很有前途的原位生长方法,可用于低成本、高通量的纳米制造。虽然应变工程作为一种定义纳米结构的策略,通过严格控制尺寸、形状和取向在金属和半导体中得到了广泛应用,但在新兴的功能复杂氧化物领域中,它很少被探索。在这里,我们将展示热力学建模在理解通过 CSD 生长氧化物纳米结构的控制原理方面非常有用,并且还将介绍一些有吸引力的动力学特征。应变工程的方法被高度详细地应用于形成不同类型的纳米结构(纳米点、纳米线)的 CeO2 氧化物,然后将其用作模型系统来识别控制 CSD 生长氧化物中的自组装和自组织的原理。我们还简要介绍了这些想法在其他氧化物(如锰氧化物或 BaZrO3)中的应用。我们将展示,虽然对于成核和生长步骤已经有了基本的理解和控制,但对于自组织网络演变背后的动力学现象,仍然缺乏广泛的探索,即使已经观察到了非常有吸引力的效应。总的来说,我们基于 CSD 方法的研究为广泛应用自组装和自组织开辟了一条新的策略,现在可以广泛应用于许多功能氧化物材料。