Kleijer Kristel T E, Schmeisser Michael J, Krueger Dilja D, Boeckers Tobias M, Scheiffele Peter, Bourgeron Thomas, Brose Nils, Burbach J Peter H
Department Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Universiteitsweg 100, 3984 CG, Utrecht, The Netherlands.
Psychopharmacology (Berl). 2014 Mar;231(6):1037-62. doi: 10.1007/s00213-013-3403-3. Epub 2014 Jan 14.
The genetic heterogeneity of autism spectrum disorders (ASDs) is enormous, and the neurobiology of proteins encoded by genes associated with ASD is very diverse. Revealing the mechanisms on which different neurobiological pathways in ASD pathogenesis converge may lead to the identification of drug targets.
The main objective is firstly to outline the main molecular networks and neuronal mechanisms in which ASD gene products participate and secondly to answer the question how these converge. Finally, we aim to pinpoint drug targets within these mechanisms.
Literature review of the neurobiological properties of ASD gene products with a special focus on the developmental consequences of genetic defects and the possibility to reverse these by genetic or pharmacological interventions.
The regulation of activity-dependent protein synthesis appears central in the pathogenesis of ASD. Through sequential consequences for axodendritic function, neuronal disabilities arise expressed as behavioral abnormalities and autistic symptoms in ASD patients. Several known ASD gene products have their effect on this central process by affecting protein synthesis intrinsically, e.g., through enhancing the mammalian target of rapamycin (mTOR) signal transduction pathway or through impairing synaptic function in general. These are interrelated processes and can be targeted by compounds from various directions: inhibition of protein synthesis through Lovastatin, mTOR inhibition using rapamycin, or mGluR-related modulation of synaptic activity.
ASD gene products may all feed into a central process of translational control that is important for adequate glutamatergic regulation of dendritic properties. This process can be modulated by available compounds but may also be targeted by yet unexplored routes.
自闭症谱系障碍(ASD)的基因异质性极大,且与ASD相关基因所编码蛋白质的神经生物学特性极为多样。揭示ASD发病机制中不同神经生物学途径的汇聚机制可能会促成药物靶点的识别。
主要目的一是概述ASD基因产物所参与的主要分子网络和神经元机制,二是回答这些机制如何汇聚的问题。最后,我们旨在确定这些机制中的药物靶点。
对ASD基因产物的神经生物学特性进行文献综述,特别关注基因缺陷的发育后果以及通过基因或药物干预逆转这些后果的可能性。
活性依赖的蛋白质合成调控在ASD发病机制中似乎至关重要。通过对轴突树突功能产生一系列后果,出现神经元功能障碍,并在ASD患者中表现为行为异常和自闭症症状。几种已知的ASD基因产物通过内在影响蛋白质合成,例如通过增强雷帕霉素哺乳动物靶点(mTOR)信号转导途径或总体上损害突触功能,对这一核心过程产生影响。这些是相互关联的过程,可以从多个方向用化合物进行靶向作用:使用洛伐他汀抑制蛋白质合成,使用雷帕霉素抑制mTOR,或对突触活性进行与代谢型谷氨酸受体(mGluR)相关的调节。
ASD基因产物可能都汇聚到一个翻译控制的核心过程,这一过程对于树突特性的适当谷氨酸能调节很重要。这一过程可以用现有化合物进行调节,但也可能通过尚未探索的途径进行靶向作用。