Suppr超能文献

蛋白质结晶简介。

Introduction to protein crystallization.

作者信息

McPherson Alexander, Gavira Jose A

机构信息

Department of Molecular Biology and Biochemistry, University of California, Irvine, 560 Steinhaus Hall, Irvine, CA 92697-3900, USA.

Laboratorio de Estudios Cristalográficos, IACT (CSIC-UGR), Avenida de las Palmeras 4, 18100 Armilla, Granada, Spain.

出版信息

Acta Crystallogr F Struct Biol Commun. 2014 Jan;70(Pt 1):2-20. doi: 10.1107/S2053230X13033141. Epub 2013 Dec 24.

Abstract

Protein crystallization was discovered by chance about 150 years ago and was developed in the late 19th century as a powerful purification tool and as a demonstration of chemical purity. The crystallization of proteins, nucleic acids and large biological complexes, such as viruses, depends on the creation of a solution that is supersaturated in the macromolecule but exhibits conditions that do not significantly perturb its natural state. Supersaturation is produced through the addition of mild precipitating agents such as neutral salts or polymers, and by the manipulation of various parameters that include temperature, ionic strength and pH. Also important in the crystallization process are factors that can affect the structural state of the macromolecule, such as metal ions, inhibitors, cofactors or other conventional small molecules. A variety of approaches have been developed that combine the spectrum of factors that effect and promote crystallization, and among the most widely used are vapor diffusion, dialysis, batch and liquid-liquid diffusion. Successes in macromolecular crystallization have multiplied rapidly in recent years owing to the advent of practical, easy-to-use screening kits and the application of laboratory robotics. A brief review will be given here of the most popular methods, some guiding principles and an overview of current technologies.

摘要

蛋白质结晶大约在150年前被偶然发现,并在19世纪后期发展成为一种强大的纯化工具以及化学纯度的一种证明。蛋白质、核酸以及大型生物复合物(如病毒)的结晶,取决于创造一种在大分子中过饱和但呈现出不会显著干扰其天然状态的条件的溶液。过饱和度是通过添加温和的沉淀剂(如中性盐或聚合物)以及通过控制包括温度、离子强度和pH值在内的各种参数来产生的。在结晶过程中同样重要的是能够影响大分子结构状态的因素,如金属离子、抑制剂、辅因子或其他传统小分子。已经开发出了多种方法,这些方法结合了影响和促进结晶的一系列因素,其中使用最广泛的是气相扩散、透析、分批和液-液扩散。由于实用、易于使用的筛选试剂盒的出现以及实验室机器人技术的应用,近年来大分子结晶的成功案例迅速增加。这里将简要回顾最流行的方法、一些指导原则以及当前技术的概述。

相似文献

1
Introduction to protein crystallization.
Acta Crystallogr F Struct Biol Commun. 2014 Jan;70(Pt 1):2-20. doi: 10.1107/S2053230X13033141. Epub 2013 Dec 24.
2
Protein Crystallization.
Methods Mol Biol. 2017;1607:17-50. doi: 10.1007/978-1-4939-7000-1_2.
3
Protein crystallization for X-ray crystallography.
J Vis Exp. 2011 Jan 16(47):2285. doi: 10.3791/2285.
4
A modified vapor-diffusion crystallization protocol that uses a common dehydrating agent.
Acta Crystallogr D Biol Crystallogr. 2005 Aug;61(Pt 8):1041-8. doi: 10.1107/S0907444905013806. Epub 2005 Jul 20.
5
Crystallization of macromolecules.
Curr Protoc Protein Sci. 2004 Feb;Chapter 17:17.4.1-17.4.25. doi: 10.1002/0471140864.ps1704s34.
6
Protein crystallization.
Methods Mol Biol. 2007;383:337-49. doi: 10.1007/978-1-59745-335-6_22.
8
Protein crystallization in the structural genomics era.
J Struct Funct Genomics. 2004;5(1-2):3-12. doi: 10.1023/B:JSFG.0000029199.43875.92.
9
Crystallization of macromolecules.
Curr Protoc Protein Sci. 2011 Nov;Chapter 17:17.4.1-17.4.26. doi: 10.1002/0471140864.ps1704s66.
10
The protein as a variable in protein crystallization.
J Struct Biol. 2003 Apr;142(1):88-97. doi: 10.1016/s1047-8477(03)00041-8.

引用本文的文献

1
Structural and Spectroscopic Characterization of a Histidine-Containing Tetrapeptide Crystallized with Copper Chloride.
ACS Omega. 2025 Jul 4;10(27):29647-29653. doi: 10.1021/acsomega.5c03327. eCollection 2025 Jul 15.
2
Adsorption of silica oligomers on biomolecules: Structural and dynamical insights for atom probe tomography via classic molecular dynamics simulations.
Comput Struct Biotechnol J. 2025 Jun 6;27:2537-2543. doi: 10.1016/j.csbj.2025.06.004. eCollection 2025.
3
Application of a Rational Crystal Contact Engineering Strategy on a Poly(ethylene terephthalate)-Degrading Cutinase.
Bioengineering (Basel). 2025 May 23;12(6):561. doi: 10.3390/bioengineering12060561.
4
An Integrated Experimental and Modeling Approach for Crystallization of Complex Biotherapeutics.
Cryst Growth Des. 2025 May 27;25(11):3687-3696. doi: 10.1021/acs.cgd.4c01720. eCollection 2025 Jun 4.
5
A multiscale time-resolved study of the nano- to millisecond structural dynamics during protein crystallization.
J Appl Crystallogr. 2025 May 29;58(Pt 3):845-858. doi: 10.1107/S160057672500353X. eCollection 2025 Jun 1.
6
Preparing for successful protein crystallization experiments.
Acta Crystallogr F Struct Biol Commun. 2025 Jul 1;81(Pt 7):272-280. doi: 10.1107/S2053230X25004650. Epub 2025 Jun 2.
8
Edge-enhanced interaction graph network for protein-ligand binding affinity prediction.
PLoS One. 2025 Apr 8;20(4):e0320465. doi: 10.1371/journal.pone.0320465. eCollection 2025.
9
Revisiting the druggable genome using predicted structures and data mining.
NPJ Drug Discov. 2025;2(1):3. doi: 10.1038/s44386-025-00006-5. Epub 2025 Mar 4.

本文引用的文献

1
Some practical guidelines for UV imaging in the protein crystallization laboratory.
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2013 Feb 1;69(Pt 2):201-8. doi: 10.1107/S1744309112048634. Epub 2013 Jan 26.
2
Emerging opportunities in structural biology with X-ray free-electron lasers.
Curr Opin Struct Biol. 2012 Oct;22(5):613-26. doi: 10.1016/j.sbi.2012.07.015. Epub 2012 Aug 22.
3
Structure of transfer RNAs: similarity and variability.
Wiley Interdiscip Rev RNA. 2012 Jan-Feb;3(1):37-61. doi: 10.1002/wrna.103. Epub 2011 Sep 28.
4
Accessing protein conformational ensembles using room-temperature X-ray crystallography.
Proc Natl Acad Sci U S A. 2011 Sep 27;108(39):16247-52. doi: 10.1073/pnas.1111325108. Epub 2011 Sep 14.
6
Efficient UV detection of protein crystals enabled by fluorescence excitation at wavelengths longer than 300 nm.
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2010 Apr 1;66(Pt 4):478-84. doi: 10.1107/S1744309110007153. Epub 2010 Mar 27.
8
Evaluating the efficacy of tryptophan fluorescence and absorbance as a selection tool for identifying protein crystals.
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2010 Mar 1;66(Pt 3):364-72. doi: 10.1107/S1744309110002022. Epub 2010 Feb 27.
9
Counterdiffusion methods applied to protein crystallization.
Prog Biophys Mol Biol. 2009 Nov;101(1-3):26-37. doi: 10.1016/j.pbiomolbio.2009.12.004. Epub 2009 Dec 16.
10
Heterogeneous and epitaxial nucleation of protein crystals on mineral surfaces.
Science. 1988 Jan 22;239(4838):385-7. doi: 10.1126/science.239.4838.385.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验