Max-Planck-Institut für medizinische Forschung, Jahnstr. 29, 69120 Heidelberg, Germany.
Curr Opin Struct Biol. 2012 Oct;22(5):613-26. doi: 10.1016/j.sbi.2012.07.015. Epub 2012 Aug 22.
X-ray free-electron lasers (X-FELs) produce X-ray pulses with extremely brilliant peak intensity and ultrashort pulse duration. It has been proposed that radiation damage can be 'outrun' by using an ultra intense and short X-FEL pulse that passes a biological sample before the onset of significant radiation damage. The concept of 'diffraction-before-destruction' has been demonstrated recently at the Linac Coherent Light Source, the first operational hard X-ray FEL, for protein nanocrystals and giant virus particles. The continuous diffraction patterns from single particles allow solving the classical 'phase problem' by the oversampling method with iterative algorithms. If enough data are collected from many identical copies of a (biological) particle, its three-dimensional structure can be reconstructed. We review the current status and future prospects of serial femtosecond crystallography (SFX) and single-particle coherent diffraction imaging (CDI) with X-FELs.
无自由电子激光(X-FEL)产生的 X 射线脉冲具有极高的亮度和极短的脉冲持续时间。有人提出,可以利用超强和超短的 X-FEL 脉冲来“逃避”辐射损伤,该脉冲在显著辐射损伤发生之前通过生物样品。最近,在第一台运行的硬 X 射线 FEL——Linac Coherent Light Source 上,已经证明了蛋白质纳米晶体和巨型病毒颗粒的“先衍射后破坏”的概念。来自单个粒子的连续衍射图案允许通过迭代算法的过采样方法解决经典的“相位问题”。如果从(生物)粒子的许多相同副本中收集到足够的数据,则可以重建其三维结构。我们回顾了使用 X-FEL 的连续飞秒晶体学(SFX)和单颗粒相干衍射成像(CDI)的现状和未来前景。