Molecular Foundry, ‡Materials Sciences Division, §Environmental Energy Technologies Division, and ∥National Center for Electron Microscopy, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States.
J Am Chem Soc. 2014 Feb 5;136(5):2070-7. doi: 10.1021/ja412123y. Epub 2014 Jan 27.
Atomic level synthetic control over a polymer's chemical structure can reveal new insights into the crystallization kinetics of block copolymers. Here, we explore the impact of side chain structure on crystallization behavior, by designing a series of sequence-defined, highly monodisperse peptoid diblock copolymers poly-N-decylglycine-block-poly-N-2-(2-(2-methoxyethoxy)ethoxy)ethylglycine (pNdc-b-pNte) with volume fraction of pNte (ϕNte) values ranging from 0.29 to 0.71 and polydispersity indices ≤1.00017. Both monomers have nearly identical molecular volumes, but the pNte block is amorphous while the pNdc block is crystalline. We demonstrate by X-ray scattering and calorimetry that all the block copolypeptoids self-assemble into lamellar microphases and that the self-assembly is driven by crystallization of the pNdc block. Interestingly, the microphase separated pNdc-b-pNte diblock copolymers form two distinct crystalline phases. Crystallization of the normally amorphous pNte chains is induced by the preorganization of the crystalline pNdc chains. We hypothesize that this is due to the similarity of chemical structure of the monomers (both monomers have linear side chains of similar lengths emanating from a polyglycine backbone). The pNte block remains amorphous when the pNdc block is replaced by another crystalline block, poly-N-isoamylglycine, suggesting that a close matching of the lattice spacings is required for induced crystallization. To our knowledge, there are no previous reports of crystallization of a polymer chain induced by microphase separation. These investigations show that polypeptoids provide a unique platform for examining the effect of intertwined roles of side chain organization on the thermodynamic properties of diblock copolymers.
在聚合物的化学结构上进行原子级的合成控制,可以揭示嵌段共聚物结晶动力学的新见解。在这里,我们通过设计一系列序列定义的、高度单分散的肽类两亲性嵌段共聚物聚-N-癸基甘氨酸-聚-N-2-(2-(2-甲氧基乙氧基)乙氧基)乙基甘氨酸(pNdc-b-pNte),来探索侧链结构对结晶行为的影响,该嵌段共聚物中 pNte 嵌段的体积分数(ϕNte)范围为 0.29 至 0.71,多分散指数≤1.00017。这两种单体的分子体积几乎相同,但 pNte 嵌段是无定形的,而 pNdc 嵌段是结晶的。我们通过 X 射线散射和量热法证明,所有的嵌段两亲性肽类共聚物都自组装成层状微相,并且自组装是由 pNdc 嵌段的结晶驱动的。有趣的是,微相分离的 pNdc-b-pNte 两亲性嵌段共聚物形成了两种不同的结晶相。通常无定形的 pNte 链的结晶是由结晶的 pNdc 链的预组织诱导的。我们假设这是由于单体的化学结构相似(两种单体都具有相似长度的线性侧链,从聚甘氨酸主链上伸出)。当 pNdc 嵌段被另一个结晶嵌段,聚-N-异戊基甘氨酸取代时,pNte 嵌段仍然是无定形的,这表明需要晶格间距的紧密匹配才能诱导结晶。据我们所知,以前没有关于聚合物链通过微相分离诱导结晶的报道。这些研究表明,多肽类共聚物为研究侧链组织的交织作用对嵌段共聚物热力学性质的影响提供了一个独特的平台。