Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA; Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37203, USA.
Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA; Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37203, USA.
Neurobiol Dis. 2014 May;65:142-59. doi: 10.1016/j.nbd.2014.01.008. Epub 2014 Jan 12.
Fragile X syndrome (FXS), caused by loss of FMR1 gene function, is the most common heritable cause of intellectual disability and autism spectrum disorders. The FMR1 protein (FMRP) translational regulator mediates activity-dependent control of synapses. In addition to the metabotropic glutamate receptor (mGluR) hyperexcitation FXS theory, the GABA theory postulates that hypoinhibition is causative for disease state symptoms. Here, we use the Drosophila FXS model to assay central brain GABAergic circuitry, especially within the Mushroom Body (MB) learning center. All 3 GABAA receptor (GABAAR) subunits are reportedly downregulated in dfmr1 null brains. We demonstrate parallel downregulation of glutamic acid decarboxylase (GAD), the rate-limiting GABA synthesis enzyme, although GABAergic cell numbers appear unaffected. Mosaic analysis with a repressible cell marker (MARCM) single-cell clonal studies show that dfmr1 null GABAergic neurons innervating the MB calyx display altered architectural development, with early underdevelopment followed by later overelaboration. In addition, a new class of extra-calyx terminating GABAergic neurons is shown to include MB intrinsic α/β Kenyon Cells (KCs), revealing a novel level of MB inhibitory regulation. Functionally, dfmr1 null GABAergic neurons exhibit elevated calcium signaling and altered kinetics in response to acute depolarization. To test the role of these GABAergic changes, we attempted to pharmacologically restore GABAergic signaling and assay effects on the compromised MB-dependent olfactory learning in dfmr1 mutants, but found no improvement. Our results show that GABAergic circuit structure and function are impaired in the FXS disease state, but that correction of hypoinhibition alone is not sufficient to rescue a behavioral learning impairment.
脆性 X 综合征(FXS)是由 FMR1 基因功能丧失引起的,是智力障碍和自闭症谱系障碍最常见的遗传性病因。FMR1 蛋白(FMRP)作为翻译调节剂,介导突触的活性依赖性调控。除了代谢型谷氨酸受体(mGluR)过度兴奋 FXS 理论外,GABA 理论还假设抑制不足是疾病状态症状的原因。在这里,我们使用果蝇 FXS 模型来检测中枢脑 GABA 能回路,特别是在蘑菇体(MB)学习中心。据报道,dfmr1 缺失脑中所有 3 种 GABAA 受体(GABAAR)亚基都下调。我们证明了谷氨酸脱羧酶(GAD)的平行下调,GAD 是 GABA 合成的限速酶,尽管 GABA 能细胞数量似乎没有受到影响。具有可抑制细胞标记物的马赛克分析(MARCM)单细胞克隆研究表明,支配 MB 心室的 dfmr1 缺失 GABA 能神经元显示出改变的结构发育,早期发育不良,随后过度发育。此外,还显示出一类新的额外心室终止 GABA 能神经元包括 MB 内在的α/β Kenyon 细胞(KCs),揭示了 MB 抑制调节的新水平。功能上,dfmr1 缺失 GABA 能神经元表现出钙信号升高和对急性去极化的动力学改变。为了测试这些 GABA 能变化的作用,我们试图通过药理学恢复 GABA 能信号,并检测对 dfmr1 突变体中受损的 MB 依赖性嗅觉学习的影响,但没有发现改善。我们的研究结果表明,在 FXS 疾病状态下,GABA 能回路的结构和功能受损,但仅纠正抑制不足不足以挽救行为学习障碍。