Suppr超能文献

原代培养新生大鼠心肌细胞中收缩性心肌细胞集落的特征:体外心肌发生模型。

Characterization of contracting cardiomyocyte colonies in the primary culture of neonatal rat myocardial cells: a model of in vitro cardiomyogenesis.

机构信息

Center of Cytoanalysis; Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences; St. Petersburg, Russia; Institute of Experimental Medicine; Federal Almazov Medical Research Centre; St. Petersburg, Russia.

Institute of Experimental Medicine; Federal Almazov Medical Research Centre; St. Petersburg, Russia.

出版信息

Cell Cycle. 2014;13(6):910-8. doi: 10.4161/cc.27768. Epub 2014 Jan 14.

Abstract

The unmet clinical need for myocardial repair after irreversible ischemic injury requires a better understanding of the biological properties of cardiac stem cells (CSCs). Using a primary culture of neonatal rat myocardial cells, we describe the formation and maturation of contracting cardiomyocyte colonies stemming from c-kit(+), Sca(+), or Isl1(+) CSCs, which occurs in parallel to the hypertrophy of the major cardiac myocyte population. The contracting cardiomyocyte colonies (~1-2 colonies per 1 × 10(5) of myocardial cells) were identified starting from eighth day of culturing. At first, spontaneous weak, asynchronous, and arrhythmic contractions of the colonies at a rate of 2-3 beats/min were registered. Over time, the contractions of the colonies became more synchronous and frequent, with a contraction rate of 58-60 beats/min by the 30th day of culturing. The colonies were characterized by the CSCs subtype-specific pattern of growth and structure. The cells of the colonies were capable of spontaneous cardiomyogenic differentiation, demonstrating expression of both sarcomeric α-actinin and α-sarcomeric actin as well as the maturation of contractile machinery and typical Ca(2+) responses to caffeine (5 mМ) and K(+) (120 mМ). Electromechanical coupling, characterized by cardiac muscle-specific Ca(2+)-induced Ca(2+) release, was evident at 3 weeks of culturing. Thus, the co-cultivation of CSCs with mature cardiac cells resulted in the formation of contracting cardiomyocyte colonies, resembling the characteristics of in vivo cardiomyogenesis. The proposed model can be used for the investigation of fundamental mechanisms underlying cardiomyogenic differentiation of CSCs as well as for drug testing and/or other applications.

摘要

对于不可逆性缺血损伤后的心肌修复,临床需求尚未得到满足,这需要我们更好地了解心脏干细胞(CSC)的生物学特性。我们使用新生大鼠心肌细胞的原代培养物,描述了源自 c-kit(+)、Sca(+)或 Isl1(+) CSC 的收缩性心肌细胞集落的形成和成熟,这与主要心肌细胞群体的肥大同时发生。从培养的第 8 天开始,可以识别出具有收缩性的心肌细胞集落(每个 1×10(5)心肌细胞约有 1-2 个集落)。起初,自发的、微弱的、不同步的、节律不齐的集落收缩以 2-3 次/分钟的频率被记录下来。随着时间的推移,集落的收缩变得更加同步和频繁,到第 30 天培养时,收缩频率达到 58-60 次/分钟。集落的特征是 CSC 亚型特异性的生长和结构模式。集落中的细胞能够自发地进行心肌生成性分化,表现出肌球蛋白α-actinin 和α-肌球蛋白的表达,以及收缩机制的成熟和对咖啡因(5 mМ)和 K(+)(120 mМ)的典型 Ca(2+)反应。以心肌特异性 Ca(2+)诱导的 Ca(2+)释放为特征的电机械偶联在培养的第 3 周就很明显。因此,CSC 与成熟心肌细胞的共培养导致了收缩性心肌细胞集落的形成,类似于体内心肌发生的特征。所提出的模型可用于研究 CSC 的心肌生成性分化的基本机制,以及用于药物测试和/或其他应用。

相似文献

2
Differentiation of human adipose-derived stem cells into beating cardiomyocytes.
J Cell Mol Med. 2010 Apr;14(4):878-89. doi: 10.1111/j.1582-4934.2010.01009.x. Epub 2010 Jan 11.
3
Stimulation of Proliferation and Differentiation of Rat Resident Myocardial Cells with Apoptotic Bodies of Cardiomyocytes.
Bull Exp Biol Med. 2015 May;159(1):138-41. doi: 10.1007/s10517-015-2909-6. Epub 2015 Jun 2.
4
Cardiomyogenesis in the developing heart is regulated by c-kit-positive cardiac stem cells.
Circ Res. 2012 Mar 2;110(5):701-15. doi: 10.1161/CIRCRESAHA.111.259507. Epub 2012 Jan 24.
5
Inhibition of notch1-dependent cardiomyogenesis leads to a dilated myopathy in the neonatal heart.
Circ Res. 2010 Aug 6;107(3):429-41. doi: 10.1161/CIRCRESAHA.110.218487. Epub 2010 Jun 17.
6
Characterization of long-term cultured c-kit+ cardiac stem cells derived from adult rat hearts.
Stem Cells Dev. 2010 Jan;19(1):105-16. doi: 10.1089/scd.2009.0041.
8
Identification of cardiac stem cells within mature cardiac myocytes.
Cell Cycle. 2015;14(19):3155-62. doi: 10.1080/15384101.2015.1078037. Epub 2015 Aug 17.
9
Generation of Cardiomyocytes From Vascular Adventitia-Resident Stem Cells.
Circ Res. 2018 Aug 31;123(6):686-699. doi: 10.1161/CIRCRESAHA.117.312526.

引用本文的文献

1
Quantification of Cardiomyocyte Contraction In Vitro and Drug Screening by MyocytoBeats.
J Cardiovasc Transl Res. 2023 Aug;16(4):758-767. doi: 10.1007/s12265-023-10357-x. Epub 2023 Jan 30.
2
Dense optical flow software to quantify cellular contractility.
Cell Rep Methods. 2021 Jul 7;1(4):100044. doi: 10.1016/j.crmeth.2021.100044. eCollection 2021 Aug 23.
4
Effect of TFAM on ATP content in tachypacing primary cultured cardiomyocytes and atrial fibrillation patients.
Mol Med Rep. 2020 Dec;22(6):5105-5112. doi: 10.3892/mmr.2020.11593. Epub 2020 Oct 14.
5
How to Stimulate Myocardial Regeneration in Adult Mammalian Heart: Existing Views and New Approaches.
Biomed Res Int. 2020 Mar 3;2020:7874109. doi: 10.1155/2020/7874109. eCollection 2020.
6
Changes in the crystallographic structures of cardiac myosin filaments detected by polarization-dependent second harmonic generation microscopy.
Biomed Opt Express. 2019 Jun 7;10(7):3183-3195. doi: 10.1364/BOE.10.003183. eCollection 2019 Jul 1.
7
Adult Cardiomyocyte Cell Cycle Detour: Off-ramp to Quiescent Destinations.
Trends Endocrinol Metab. 2019 Aug;30(8):557-567. doi: 10.1016/j.tem.2019.05.006. Epub 2019 Jun 28.
10
Hypoxia-stressed cardiomyocytes promote early cardiac differentiation of cardiac stem cells through HIF-1/Jagged1/Notch1 signaling.
Acta Pharm Sin B. 2018 Sep;8(5):795-804. doi: 10.1016/j.apsb.2018.06.003. Epub 2018 Jun 12.

本文引用的文献

1
Concise review: heart regeneration and the role of cardiac stem cells.
Stem Cells Transl Med. 2013 Jun;2(6):434-43. doi: 10.5966/sctm.2013-0001. Epub 2013 May 8.
2
Regenerating new heart with stem cells.
J Clin Invest. 2013 Jan;123(1):62-70. doi: 10.1172/JCI63068. Epub 2013 Jan 2.
4
Transient regenerative potential of the neonatal mouse heart.
Science. 2011 Feb 25;331(6020):1078-80. doi: 10.1126/science.1200708.
6
Paracrine mechanisms of stem cell reparative and regenerative actions in the heart.
J Mol Cell Cardiol. 2011 Feb;50(2):280-9. doi: 10.1016/j.yjmcc.2010.08.005. Epub 2010 Aug 19.
7
Cardiomyogenic potential of C-kit(+)-expressing cells derived from neonatal and adult mouse hearts.
Circulation. 2010 May 11;121(18):1992-2000. doi: 10.1161/CIRCULATIONAHA.109.909093. Epub 2010 Apr 26.
8
Embryonic Stem Cells as a Model for Cardiac Development and Disease.
Drug Discov Today Dis Models. 2008;5(3):147-155. doi: 10.1016/j.ddmod.2009.03.004.
9
Characterization of long-term cultured c-kit+ cardiac stem cells derived from adult rat hearts.
Stem Cells Dev. 2010 Jan;19(1):105-16. doi: 10.1089/scd.2009.0041.
10
Human ISL1 heart progenitors generate diverse multipotent cardiovascular cell lineages.
Nature. 2009 Jul 2;460(7251):113-7. doi: 10.1038/nature08191.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验