Suppr超能文献

数据解释的灵活性:表示格式的影响。

Flexibility in data interpretation: effects of representational format.

机构信息

Percepts-Concepts Laboratory, Department of Psychological and Brain Sciences, Indiana University Bloomington, IN, USA.

出版信息

Front Psychol. 2013 Dec 31;4:980. doi: 10.3389/fpsyg.2013.00980. eCollection 2013.

Abstract

Graphs and tables differentially support performance on specific tasks. For tasks requiring reading off single data points, tables are as good as or better than graphs, while for tasks involving relationships among data points, graphs often yield better performance. However, the degree to which graphs and tables support flexibility across a range of tasks is not well-understood. In two experiments, participants detected main and interaction effects in line graphs and tables of bivariate data. Graphs led to more efficient performance, but also lower flexibility, as indicated by a larger discrepancy in performance across tasks. In particular, detection of main effects of variables represented in the graph legend was facilitated relative to detection of main effects of variables represented in the x-axis. Graphs may be a preferable representational format when the desired task or analytical perspective is known in advance, but may also induce greater interpretive bias than tables, necessitating greater care in their use and design.

摘要

图形和表格在特定任务上的表现存在差异。对于需要读取单个数据点的任务,表格与图形一样好,甚至更好,而对于涉及数据点之间关系的任务,图形通常能产生更好的性能。然而,图形和表格在多大程度上支持一系列任务的灵活性还不是很清楚。在两项实验中,参与者检测了双变量数据的线图和表格中的主效应和交互效应。图形表现出更高的效率,但也表现出更低的灵活性,这表现在任务之间的表现差异更大。特别是,与在 x 轴上表示的变量的主效应相比,在图形图例中表示的变量的主效应更容易被检测到。当预先知道所需的任务或分析视角时,图形可能是一种更可取的表示形式,但与表格相比,它也可能会引起更大的解释偏差,因此在使用和设计时需要更加小心。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15c9/3876463/f76b10d22328/fpsyg-04-00980-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验