Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA.
J Virol. 2014 Apr;88(7):3766-75. doi: 10.1128/JVI.03483-13. Epub 2014 Jan 15.
The nucleocapsid of a negative-strand RNA virus is assembled with a single nucleocapsid protein and the viral genomic RNA. The nucleocapsid protein polymerizes along the length of the single-strand genomic RNA (viral RNA) or its cRNA. This process of encapsidation occurs concomitantly with genomic replication. Structural comparisons of several nucleocapsid-like particles show that the mechanism of RNA encapsidation in negative-strand RNA viruses has many common features. Fundamentally, there is a unifying mechanism to keep the capsid protein protomer monomeric prior to encapsidation of viral RNA. In the nucleocapsid, there is a cavity between two globular domains of the nucleocapsid protein where the viral RNA is sequestered. The viral RNA must be transiently released from the nucleocapsid in order to reveal the template RNA sequence for transcription/replication. There are cross-molecular interactions among the protein subunits linearly along the nucleocapsid to stabilize its structure. Empty capsids can form in the absence of RNA. The common characteristics of RNA encapsidation not only delineate the evolutionary relationship of negative-strand RNA viruses but also provide insights into their mechanism of replication.
What separates negative-strand RNA viruses (NSVs) from the rest of the virosphere is that the nucleocapsid of NSVs serves as the template for viral RNA synthesis. Their viral RNA-dependent RNA polymerase can induce local conformational changes in the nucleocapsid to temporarily release the RNA genome so that the viral RNA-dependent RNA polymerase can use it as the template for RNA synthesis during both transcription and replication. After RNA synthesis at the local region is completed, the viral RNA-dependent RNA polymerase processes downstream, and the RNA genome is restored in the nucleocapsid. We found that the nucleocapsid assembly of all NSVs shares three essential elements: a monomeric capsid protein protomer, parallel orientation of subunits in the linear nucleocapsid, and a (5H + 3H) motif that forms a proper cavity for sequestration of the RNA. This observation also suggests that all NSVs evolved from a common ancestor that has this unique nucleocapsid.
负链 RNA 病毒的核衣壳由单一核衣壳蛋白和病毒基因组 RNA 组装而成。核衣壳蛋白沿着单链基因组 RNA(病毒 RNA)或其 cRNA 的长度聚合。这种包装过程与基因组复制同时发生。对几种核衣壳样颗粒的结构比较表明,负链 RNA 病毒中 RNA 包装的机制具有许多共同特征。从根本上讲,有一种统一的机制可以在包装病毒 RNA 之前使衣壳蛋白单体保持单体状态。在核衣壳中,核衣壳蛋白的两个球形结构域之间存在一个腔,病毒 RNA 被隔离在其中。为了揭示转录/复制的模板 RNA 序列,病毒 RNA 必须从核衣壳中短暂释放出来。线性排列在核衣壳中的蛋白质亚基之间存在跨分子相互作用,以稳定其结构。在没有 RNA 的情况下可以形成空衣壳。RNA 包装的共同特征不仅描绘了负链 RNA 病毒的进化关系,而且为它们的复制机制提供了深入的了解。
将负链 RNA 病毒 (NSV) 与病毒圈的其他部分区分开来的是,NSV 的核衣壳充当病毒 RNA 合成的模板。它们的病毒 RNA 依赖性 RNA 聚合酶可以诱导核衣壳的局部构象变化,从而暂时释放 RNA 基因组,以便病毒 RNA 依赖性 RNA 聚合酶可以在转录和复制过程中都将其用作 RNA 合成的模板。局部区域的 RNA 合成完成后,病毒 RNA 依赖性 RNA 聚合酶继续进行下游加工,RNA 基因组在核衣壳中恢复。我们发现,所有 NSV 的核衣壳组装都共享三个基本要素:单体衣壳蛋白原聚体、线性核衣壳中亚基的平行取向,以及形成适当 RNA 隔离腔的(5H + 3H)基序。这一观察结果还表明,所有 NSV 都从具有这种独特核衣壳的共同祖先进化而来。