Suppr超能文献

病毒 RNA 合成对负链 RNA 病毒密码子使用的限制。

Constraints of Viral RNA Synthesis on Codon Usage of Negative-Strand RNA Virus.

机构信息

Department of Chemistry, Georgia State University, Atlanta, Georgia, USA.

Molecular Basis of Disease, Georgia State University, Atlanta, Georgia, USA.

出版信息

J Virol. 2019 Feb 19;93(5). doi: 10.1128/JVI.01775-18. Print 2019 Mar 1.

Abstract

Negative-strand RNA viruses (NSVs) include some of the most pathogenic human viruses known. NSVs completely rely on the host cell for protein translation, but their codon usage bias is often different from that of the host. This discrepancy may have originated from the unique mechanism of NSV RNA synthesis in that the genomic RNA sequestered in the nucleocapsid serves as the template. The stability of the genomic RNA in the nucleocapsid appears to regulate its accessibility to the viral RNA polymerase, thus placing constraints on codon usage to balance viral RNA synthesis. By analyses of vesicular stomatitis virus RNA synthesis, specific activities of viral RNA synthesis were correlated with the genomic RNA sequence. It was found that by simply altering the sequence and not the amino acid that it encoded, a significant reduction, up to an ∼750-fold reduction, in viral RNA transcripts occurred. Through subsequent sequence analysis and thermal shift assays, it was found that the purine/pyrimidine content modulates the overall stability of the polymerase complex, resulting in alteration of the activity of viral RNA synthesis. The codon usage is therefore constrained by the obligation of the NSV genome for viral RNA synthesis. Negative-strand RNA viruses (NSVs) include the most pathogenic viruses known. New methods to monitor their evolutionary trends are urgently needed for the development of antivirals and vaccines. The protein translation machinery of the host cell is currently recognized as a main genomic regulator of RNA virus evolution, which works especially well for positive-strand RNA viruses. However, this approach fails for NSVs because it does not consider the unique mechanism of their viral RNA synthesis. For NSVs, the viral RNA-dependent RNA polymerase (vRdRp) must gain access to the genome sequestered in the nucleocapsid. Our work suggests a paradigm shift that the interactions between the RNA genome and the nucleocapsid protein regulate the activity of vRdRp, which selects codon usage.

摘要

负链 RNA 病毒 (NSVs) 包括一些已知的最具致病性的人类病毒。 NSVs 完全依赖宿主细胞进行蛋白质翻译,但它们的密码子使用偏好通常与宿主不同。这种差异可能源于 NSV RNA 合成的独特机制,即被隔离在核衣壳中的基因组 RNA 作为模板。基因组 RNA 在核衣壳中的稳定性似乎调节了其对病毒 RNA 聚合酶的可及性,从而对密码子的使用施加了限制,以平衡病毒 RNA 的合成。通过对水疱性口炎病毒 RNA 合成的分析,病毒 RNA 合成的比活与基因组 RNA 序列相关。结果发现,通过简单地改变序列而不改变其编码的氨基酸,病毒 RNA 转录物的活性会显著降低,最高可达约 750 倍。通过随后的序列分析和热移位测定,发现嘌呤/嘧啶含量调节聚合酶复合物的整体稳定性,导致病毒 RNA 合成活性的改变。因此,密码子的使用受到 NSV 基因组对病毒 RNA 合成的要求的限制。负链 RNA 病毒 (NSVs) 包括已知的最具致病性的病毒。迫切需要新的方法来监测它们的进化趋势,以开发抗病毒药物和疫苗。宿主细胞的蛋白质翻译机制目前被认为是 RNA 病毒进化的主要基因组调节剂,对正链 RNA 病毒尤其有效。然而,这种方法对 NSVs 不起作用,因为它没有考虑到它们病毒 RNA 合成的独特机制。对于 NSVs,病毒 RNA 依赖性 RNA 聚合酶 (vRdRp) 必须进入隔离在核衣壳中的基因组。我们的工作表明,一个范式转变,即 RNA 基因组与核衣壳蛋白之间的相互作用调节 vRdRp 的活性,从而选择密码子的使用。

相似文献

1
Constraints of Viral RNA Synthesis on Codon Usage of Negative-Strand RNA Virus.
J Virol. 2019 Feb 19;93(5). doi: 10.1128/JVI.01775-18. Print 2019 Mar 1.
2
Complementary Mutations in the N and L Proteins for Restoration of Viral RNA Synthesis.
J Virol. 2018 Oct 29;92(22). doi: 10.1128/JVI.01417-18. Print 2018 Nov 15.
4
Nucleocapsid Structure of Negative Strand RNA Virus.
Viruses. 2020 Jul 30;12(8):835. doi: 10.3390/v12080835.
5
The nucleocapsid of vesicular stomatitis virus.
Sci China Life Sci. 2012 Apr;55(4):291-300. doi: 10.1007/s11427-012-4307-x. Epub 2012 May 9.
6
A Polyamide Inhibits Replication of Vesicular Stomatitis Virus by Targeting RNA in the Nucleocapsid.
J Virol. 2018 Mar 28;92(8). doi: 10.1128/JVI.00146-18. Print 2018 Apr 15.
7
Common mechanism for RNA encapsidation by negative-strand RNA viruses.
J Virol. 2014 Apr;88(7):3766-75. doi: 10.1128/JVI.03483-13. Epub 2014 Jan 15.
8
Transcription and replication initiate at separate sites on the vesicular stomatitis virus genome.
Proc Natl Acad Sci U S A. 2002 Jul 9;99(14):9178-83. doi: 10.1073/pnas.152155599. Epub 2002 Jun 27.

引用本文的文献

1
Dengue virus preferentially uses human and mosquito non-optimal codons.
Mol Syst Biol. 2024 Oct;20(10):1085-1108. doi: 10.1038/s44320-024-00052-7. Epub 2024 Jul 22.
2
Prediction of two novel overlapping ORFs in the genome of SARS-CoV-2.
Virology. 2021 Oct;562:149-157. doi: 10.1016/j.virol.2021.07.011. Epub 2021 Jul 28.
3
The Codon Usage Code for Cotranslational Folding of Viral Capsids.
Genome Biol Evol. 2021 Sep 1;13(9). doi: 10.1093/gbe/evab089.
4
5
Nucleocapsid Structure of Negative Strand RNA Virus.
Viruses. 2020 Jul 30;12(8):835. doi: 10.3390/v12080835.
8
10
Attenuation of Human Respiratory Viruses by Synonymous Genome Recoding.
Front Immunol. 2019 Jun 4;10:1250. doi: 10.3389/fimmu.2019.01250. eCollection 2019.

本文引用的文献

1
Codon usage characteristics of PB2 gene in influenza A H7N9 virus from different host species.
Infect Genet Evol. 2018 Nov;65:430-435. doi: 10.1016/j.meegid.2018.08.028. Epub 2018 Sep 1.
2
Comprehensive Analysis of Codon Usage on Rabies Virus and Other Lyssaviruses.
Int J Mol Sci. 2018 Aug 14;19(8):2397. doi: 10.3390/ijms19082397.
3
Why are RNA virus mutation rates so damn high?
PLoS Biol. 2018 Aug 13;16(8):e3000003. doi: 10.1371/journal.pbio.3000003. eCollection 2018 Aug.
4
Is the golden ratio a universal constant for self-replication?
PLoS One. 2018 Jul 16;13(7):e0200601. doi: 10.1371/journal.pone.0200601. eCollection 2018.
5
A speed-fidelity trade-off determines the mutation rate and virulence of an RNA virus.
PLoS Biol. 2018 Jun 28;16(6):e2006459. doi: 10.1371/journal.pbio.2006459. eCollection 2018 Jun.
6
A Polyamide Inhibits Replication of Vesicular Stomatitis Virus by Targeting RNA in the Nucleocapsid.
J Virol. 2018 Mar 28;92(8). doi: 10.1128/JVI.00146-18. Print 2018 Apr 15.
7
Synonymous codon usage of genes in polymerase complex of Newcastle disease virus.
J Basic Microbiol. 2017 Jun;57(6):481-503. doi: 10.1002/jobm.201600740. Epub 2017 Apr 7.
8
Ebola virus: A gap in drug design and discovery - experimental and computational perspective.
Chem Biol Drug Des. 2017 Mar;89(3):297-308. doi: 10.1111/cbdd.12870. Epub 2016 Oct 31.
9
The Drug Targets and Antiviral Molecules for Treatment of Ebola Virus Infection.
Curr Top Med Chem. 2017;17(3):361-370. doi: 10.2174/1568026616666160829161318.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验