Suppr超能文献

荧光纳米显微镜:方法与应用

Fluorescence nanoscopy. Methods and applications.

作者信息

Requejo-Isidro Jose

机构信息

Unidad de Biofísica, CSIC-UPV/EHU, Barrio de Sarriena, s/n., 48940 Leioa, Spain.

出版信息

J Chem Biol. 2013 Jun 4;6(3):97-120. doi: 10.1007/s12154-013-0096-3.

Abstract

Fluorescence nanoscopy refers to the experimental techniques and analytical methods used for fluorescence imaging at a resolution higher than conventional, diffraction-limited, microscopy. This review explains the concepts behind fluorescence nanoscopy and focuses on the latest and promising developments in acquisition techniques, labelling strategies to obtain highly detailed super-resolved images and in the quantitative methods to extract meaningful information from them.

摘要

荧光纳米显微镜术是指用于荧光成像的实验技术和分析方法,其分辨率高于传统的、受衍射限制的显微镜。本综述解释了荧光纳米显微镜术背后的概念,并着重介绍了采集技术、获取高度详细的超分辨图像的标记策略以及从这些图像中提取有意义信息的定量方法方面的最新且有前景的进展。

相似文献

1
Fluorescence nanoscopy. Methods and applications.
J Chem Biol. 2013 Jun 4;6(3):97-120. doi: 10.1007/s12154-013-0096-3.
2
Low-Saturation-Intensity, High-Photostability, and High-Resolution STED Nanoscopy Assisted by CsPbBr Quantum Dots.
Adv Mater. 2018 Jun;30(23):e1800167. doi: 10.1002/adma.201800167. Epub 2018 Apr 24.
3
Recent advances in super-resolution fluorescence imaging and its applications in biology.
J Genet Genomics. 2013 Dec 20;40(12):583-95. doi: 10.1016/j.jgg.2013.11.003. Epub 2013 Nov 23.
4
5
Super-resolution imaging for cell biologists: concepts, applications, current challenges and developments.
Bioessays. 2015 Apr;37(4):436-51. doi: 10.1002/bies.201400170. Epub 2015 Jan 12.
7
A new wave of cellular imaging.
Annu Rev Cell Dev Biol. 2010;26:285-314. doi: 10.1146/annurev-cellbio-100109-104048.
8
Super-resolution microscopy: going live and going fast.
Chemphyschem. 2014 Mar 17;15(4):630-6. doi: 10.1002/cphc.201300720. Epub 2013 Oct 25.
9
Neuro at the Nanoscale: Diffraction-Unlimited Imaging with STED Nanoscopy.
J Histochem Cytochem. 2015 Dec;63(12):897-907. doi: 10.1369/0022155415610169. Epub 2015 Sep 21.
10
Strategies to maximize performance in STimulated Emission Depletion (STED) nanoscopy of biological specimens.
Methods. 2020 Mar 1;174:27-41. doi: 10.1016/j.ymeth.2019.07.019. Epub 2019 Jul 22.

引用本文的文献

1
Recent Progress of Rare-Earth Doped Upconversion Nanoparticles: Synthesis, Optimization, and Applications.
Adv Sci (Weinh). 2019 Sep 30;6(22):1901358. doi: 10.1002/advs.201901358. eCollection 2019 Nov.
2
KRAS regulation by small non-coding RNAs and SNARE proteins.
Nat Commun. 2019 Nov 11;10(1):5118. doi: 10.1038/s41467-019-13106-4.
3
Functional imaging for regenerative medicine.
Stem Cell Res Ther. 2016 Apr 19;7(1):57. doi: 10.1186/s13287-016-0315-2.
4
Correlated confocal and super-resolution imaging by VividSTORM.
Nat Protoc. 2016 Jan;11(1):163-83. doi: 10.1038/nprot.2016.002. Epub 2015 Dec 30.
5
Intracellular lumen formation in Drosophila proceeds via a novel subcellular compartment.
Development. 2015 Nov 15;142(22):3964-73. doi: 10.1242/dev.127902. Epub 2015 Oct 1.
6
Superresolution live imaging of plant cells using structured illumination microscopy.
Nat Protoc. 2015 Aug;10(8):1248-63. doi: 10.1038/nprot.2015.083. Epub 2015 Jul 23.
7
Inside single cells: quantitative analysis with advanced optics and nanomaterials.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2015 May-Jun;7(3):387-407. doi: 10.1002/wnan.1321. Epub 2014 Nov 27.
8
Single-cell in situ imaging of palmitoylation in fatty-acylated proteins.
Nat Protoc. 2014 Nov;9(11):2607-23. doi: 10.1038/nprot.2014.179. Epub 2014 Oct 9.
9
The use of nanoscale fluorescence microscopic to decipher cell wall modifications during fungal penetration.
Front Plant Sci. 2014 Jun 18;5:270. doi: 10.3389/fpls.2014.00270. eCollection 2014.

本文引用的文献

1
Accelerating 3B single-molecule super-resolution microscopy with cloud computing.
Nat Methods. 2013 Feb;10(2):96-7. doi: 10.1038/nmeth.2335.
2
Quantifying spatial organization in point-localization superresolution images using pair correlation analysis.
Nat Protoc. 2013 Feb;8(2):345-54. doi: 10.1038/nprot.2013.005. Epub 2013 Jan 24.
3
rsEGFP2 enables fast RESOLFT nanoscopy of living cells.
Elife. 2012 Dec 31;1:e00248. doi: 10.7554/eLife.00248.
4
mMaple: a photoconvertible fluorescent protein for use in multiple imaging modalities.
PLoS One. 2012;7(12):e51314. doi: 10.1371/journal.pone.0051314. Epub 2012 Dec 11.
5
Unified resolution bounds for conventional and stochastic localization fluorescence microscopy.
Phys Rev Lett. 2012 Oct 19;109(16):168102. doi: 10.1103/PhysRevLett.109.168102. Epub 2012 Oct 17.
6
rapidSTORM: accurate, fast open-source software for localization microscopy.
Nat Methods. 2012 Nov;9(11):1040-1. doi: 10.1038/nmeth.2224.
7
Simultaneous, accurate measurement of the 3D position and orientation of single molecules.
Proc Natl Acad Sci U S A. 2012 Nov 20;109(47):19087-92. doi: 10.1073/pnas.1216687109. Epub 2012 Nov 5.
8
Maturation-dependent HIV-1 surface protein redistribution revealed by fluorescence nanoscopy.
Science. 2012 Oct 26;338(6106):524-8. doi: 10.1126/science.1226359.
9
Adaptive optics enables 3D STED microscopy in aberrating specimens.
Opt Express. 2012 Sep 10;20(19):20998-1009. doi: 10.1364/OE.20.020998.
10
Heterogeneity of AMPA receptor trafficking and molecular interactions revealed by superresolution analysis of live cell imaging.
Proc Natl Acad Sci U S A. 2012 Oct 16;109(42):17052-7. doi: 10.1073/pnas.1204589109. Epub 2012 Oct 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验