Suppr超能文献

最大化生物样本受激发射损耗(STED)纳米成像性能的策略。

Strategies to maximize performance in STimulated Emission Depletion (STED) nanoscopy of biological specimens.

机构信息

Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria.

Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria.

出版信息

Methods. 2020 Mar 1;174:27-41. doi: 10.1016/j.ymeth.2019.07.019. Epub 2019 Jul 22.

Abstract

Super-resolution fluorescence microscopy has become an important catalyst for discovery in the life sciences. In STimulated Emission Depletion (STED) microscopy, a pattern of light drives fluorophores from a signal-emitting on-state to a non-signalling off-state. Only emitters residing in a sub-diffraction volume around an intensity minimum are allowed to fluoresce, rendering them distinguishable from the nearby, but dark fluorophores. STED routinely achieves resolution in the few tens of nanometers range in biological samples and is suitable for live imaging. Here, we review the working principle of STED and provide general guidelines for successful STED imaging. The strive for ever higher resolution comes at the cost of increased light burden. We discuss techniques to reduce light exposure and mitigate its detrimental effects on the specimen. These include specialized illumination strategies as well as protecting fluorophores from photobleaching mediated by high-intensity STED light. This opens up the prospect of volumetric imaging in living cells and tissues with diffraction-unlimited resolution in all three spatial dimensions.

摘要

超分辨率荧光显微镜已成为生命科学发现的重要催化剂。在受激发射损耗(STED)显微镜中,光的图案将荧光团从信号发射的开态驱动到无信号的关态。只有位于强度最小的亚衍射体积内的发射器才能发出荧光,从而使它们与附近但黑暗的荧光团区分开来。STED 通常可在生物样品中实现几十纳米范围内的分辨率,适用于活细胞成像。在这里,我们回顾了 STED 的工作原理,并提供了成功进行 STED 成像的一般指南。对更高分辨率的追求是以增加光负荷为代价的。我们讨论了降低光暴露并减轻其对标本不利影响的技术。这些技术包括专门的照明策略,以及通过高强度 STED 光保护荧光团免受光漂白。这为在所有三个空间维度上具有衍射极限分辨率的活细胞和组织中的体积成像开辟了前景。

相似文献

5
STED super-resolved microscopy.受激发射损耗超分辨显微镜。
Nat Methods. 2018 Mar;15(3):173-182. doi: 10.1038/nmeth.4593. Epub 2018 Jan 29.
9
Stimulated Emission Depletion Microscopy.受激发射损耗显微镜。
Chem Rev. 2017 Jun 14;117(11):7377-7427. doi: 10.1021/acs.chemrev.6b00653. Epub 2017 Mar 6.

引用本文的文献

6
8
Imaging brain tissue architecture across millimeter to nanometer scales.在毫米到纳米尺度上对脑组织结构进行成像。
Nat Biotechnol. 2024 Jul;42(7):1051-1064. doi: 10.1038/s41587-023-01911-8. Epub 2023 Aug 31.
9
Dense 4D nanoscale reconstruction of living brain tissue.活脑组织的密集 4D 纳米尺度重建。
Nat Methods. 2023 Aug;20(8):1256-1265. doi: 10.1038/s41592-023-01936-6. Epub 2023 Jul 10.

本文引用的文献

1
5
Solution and Solid-State Emission Toggling of a Photochromic Hydrazone.一种光致变色腙的溶液态和固态发射切换
J Am Chem Soc. 2018 Oct 3;140(39):12323-12327. doi: 10.1021/jacs.8b07108. Epub 2018 Sep 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验