1] Laboratory for Photochemistry and Spectroscopy, Katholieke Universiteit Leuven, Heverlee 3001 Belgium [2] ISIS & icFRC, Université de Strasbourg & CNRS UMR 7006, Strasbourg 67000, France.
Laboratory for Photochemistry and Spectroscopy, Katholieke Universiteit Leuven, Heverlee 3001 Belgium.
Nat Nanotechnol. 2014 Feb;9(2):131-6. doi: 10.1038/nnano.2013.285. Epub 2014 Jan 19.
Developing molecular systems with functions analogous to those of macroscopic machine components, such as rotors, gyroscopes and valves, is a long-standing goal of nanotechnology. However, macroscopic analogies go only so far in predicting function in nanoscale environments, where friction dominates over inertia. In some instances, ratchet mechanisms have been used to bias the ever-present random, thermally driven (Brownian) motion and drive molecular diffusion in desired directions. Here, we visualize the motions of surface-bound molecular rotors using defocused fluorescence imaging, and observe the transition from hindered to free Brownian rotation by tuning medium viscosity. We show that the otherwise random rotations can be biased by the polarization of the excitation light field, even though the associated optical torque is insufficient to overcome thermal fluctuations. The biased rotation is attributed instead to a fluctuating-friction mechanism in which photoexcitation of the rotor strongly inhibits its diffusion rate.
开发具有类似于宏观机器部件(如转子、陀螺仪和阀门)功能的分子系统,是纳米技术的一个长期目标。然而,在摩擦主导、惯性可以忽略不计的纳米环境中,宏观类比在预测功能方面只能起到一定的作用。在某些情况下,棘轮机制已被用于偏向于无处不在的随机、热驱动(布朗)运动,并沿期望方向驱动分子扩散。在这里,我们使用离焦荧光成像来可视化表面结合的分子转子的运动,并通过调节介质粘度来观察从受阻到自由布朗旋转的转变。我们表明,即使相关的光扭矩不足以克服热波动,激发光场的偏振也可以使原本随机的旋转发生偏差。这种有偏差的旋转归因于一种波动摩擦机制,其中转子的光激发强烈抑制了其扩散速率。