Llaurens V, Joron M, Théry M
Institut de Systématique, Evolution et Biodiversité, Département systématique et evolution, UMR 7205, Centre National de la Recherche Scientifique, Museum National d'Histoire Naturelle, Bâtiment d'entomologie, Paris, France.
Laboratoire Mécanismes Adaptatifs: des Organismes aux Communautés, Département d'Ecologie et Gestion de la Biodiversité, UMR 7179, Centre National de la Recherche Scientifique, Museum National d'Histoire Naturelle, Brunoy, France.
J Evol Biol. 2014 Mar;27(3):531-40. doi: 10.1111/jeb.12317. Epub 2014 Jan 21.
Antagonistic interactions between predators and prey often lead to co-evolution. In the case of toxic prey, aposematic colours act as warning signals for predators and play a protective role. Evolutionary convergence in colour patterns among toxic prey evolves due to positive density-dependent selection and the benefits of mutual resemblance in spreading the mortality cost of educating predators over a larger prey assemblage. Comimetic species evolve highly similar colour patterns, but such convergence may interfere with intraspecific signalling and recognition in the prey community, especially for species involved in polymorphic mimicry. Using spectrophotometry measures, we investigated the variation in wing coloration among comimetic butterflies from distantly related lineages. We focused on seven morphs of the polymorphic species Heliconius numata and the seven corresponding comimetic species from the genus Melinaea. Significant differences in the yellow, orange and black patches of the wing were detected between genera. Perceptions of these cryptic differences by bird and butterfly observers were then estimated using models of animal vision based on physiological data. Our results showed that the most strikingly perceived differences were obtained for the contrast of yellow against a black background. The capacity to discriminate between comimetic genera based on this colour contrast was also evaluated to be higher for butterflies than for birds, suggesting that this variation in colour, likely undetectable to birds, might be used by butterflies for distinguishing mating partners without losing the benefits of mimicry. The evolution of wing colour in mimetic butterflies might thus be shaped by the opposite selective pressures exerted by predation and species recognition.
捕食者与猎物之间的拮抗相互作用常常导致共同进化。对于有毒猎物而言,警戒色充当着对捕食者的警示信号并起到保护作用。有毒猎物之间颜色模式的进化趋同是由于正密度依赖选择以及在更大的猎物群体中共同相似性在分散教导捕食者的死亡成本方面的益处。拟态物种进化出高度相似的颜色模式,但这种趋同可能会干扰猎物群体中的种内信号传递和识别,尤其是对于涉及多态模仿的物种。我们使用分光光度法测量,研究了来自远缘谱系的拟态蝴蝶翅膀颜色的变化。我们聚焦于多态物种金斑蛱蝶(Heliconius numata)的七种形态以及美凤蝶属(Melinaea)的七种相应拟态物种。在属间检测到翅膀的黄色、橙色和黑色斑块存在显著差异。然后,我们基于生理数据使用动物视觉模型估计了鸟类和蝴蝶观察者对这些隐秘差异的感知。我们的结果表明,黄色与黑色背景的对比度所产生的差异是最明显可感知的。基于这种颜色对比度区分拟态属的能力在蝴蝶中也被评估为高于鸟类,这表明这种颜色变化可能鸟类难以察觉,但蝴蝶可能会利用它来区分交配对象,同时又不会失去拟态的益处。因此,拟态蝴蝶翅膀颜色的进化可能受到捕食和物种识别所施加的相反选择压力的影响。