Nascimento Filipe, Özyurt M Görkem, Halablab Kareen, Bhumbra Gardave Singh, Caron Guillaume, Bączyk Marcin, Zytnicki Daniel, Manuel Marin, Roselli Francesco, Brownstone Rob, Beato Marco
Department of Neuroscience Physiology and Pharmacology (NPP), Gower Street, University College London, WC1E 6BT, UK.
Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK.
bioRxiv. 2024 Oct 12:2024.04.10.588918. doi: 10.1101/2024.04.10.588918.
In many neurological conditions, early-stage neural circuit adaption can preserve relatively normal behaviour. In some diseases, spinal motoneurons progressively degenerate yet movement is initially preserved. We therefore investigated whether these neurons and associated microcircuits adapt in a mouse model of progressive motoneuron degeneration. Using a combination of and electrophysiology and super-resolution microscopy, we found that, early in the disease, neurotransmission in a key pre-motor circuit, the recurrent inhibition mediated by Renshaw cells, is reduced by half due to impaired quantal size associated with decreased glycine receptor density. This impairment is specific, and not a widespread feature of spinal inhibitory circuits. Furthermore, it recovers at later stages of disease. Additionally, an increased probability of release from proprioceptive afferents leads to increased monosynaptic excitation of motoneurons. We reveal that in motoneuron degenerative conditions, spinal microcircuits undergo specific multiphasic homeostatic compensations that may contribute to preservation of force output.
在许多神经疾病中,早期神经回路的适应性变化能够维持相对正常的行为。在一些疾病中,脊髓运动神经元会逐渐退化,但运动功能在初期仍可得以保留。因此,我们研究了在进行性运动神经元变性的小鼠模型中,这些神经元及相关微回路是否会发生适应性变化。通过结合[具体技术1]和[具体技术2]电生理学以及超分辨率显微镜技术,我们发现,在疾病早期,关键的运动前回路(即由闰绍细胞介导的回返性抑制)中的神经传递因量子大小受损(与甘氨酸受体密度降低有关)而减少了一半。这种损伤具有特异性,并非脊髓抑制性回路的普遍特征。此外,它在疾病后期会恢复。另外,本体感觉传入纤维释放概率的增加导致运动神经元的单突触兴奋性增强。我们揭示,在运动神经元变性疾病中,脊髓微回路会经历特定的多阶段稳态补偿,这可能有助于维持力量输出。