Suppr超能文献

鼠脊髓运动神经元中的混合模式振荡源于低兴奋性状态。

Mixed mode oscillations in mouse spinal motoneurons arise from a low excitability state.

机构信息

Laboratoire de Neurophysique et Physiologie, Université Paris Descartes, Institut des Neurosciences et de la Cognition, Centre National de la Recherche Scientifique UMR 8119, Paris 75006, France.

出版信息

J Neurosci. 2011 Apr 13;31(15):5829-40. doi: 10.1523/JNEUROSCI.6363-10.2011.

Abstract

We explain the mechanism that elicits the mixed mode oscillations (MMOs) and the subprimary firing range that we recently discovered in mouse spinal motoneurons. In this firing regime, high-frequency subthreshold oscillations appear a few millivolts below the spike voltage threshold and precede the firing of a full blown spike. By combining intracellular recordings in vivo (including dynamic clamp experiments) in mouse spinal motoneurons and modeling, we show that the subthreshold oscillations are due to the spike currents and that MMOs appear each time the membrane is in a low excitability state. Slow kinetic processes largely contribute to this low excitability. The clockwise hysteresis in the I-F relationship, frequently observed in mouse motoneurons, is mainly due to a substantial slow inactivation of the sodium current. As a consequence, less sodium current is available for spiking. This explains why a large subprimary range with numerous oscillations is present in motoneurons displaying a clockwise hysteresis. In motoneurons whose I-F curve exhibits a counterclockwise hysteresis, it is likely that the slow inactivation operates on a shorter time scale and is substantially reduced by the de-inactivating effect of the afterhyperpolarization (AHP) current, thus resulting in a more excitable state. This accounts for the short subprimary firing range with only a few MMOs seen in these motoneurons. Our study reveals a new role for the AHP current that sets the membrane excitability level by counteracting the slow inactivation of the sodium current and allows or precludes the appearance of MMOs.

摘要

我们解释了诱发混合模式振荡(MMOs)和我们最近在小鼠脊髓运动神经元中发现的亚阈发放范围的机制。在这种发放模式下,高频亚阈振荡出现在峰电位电压阈值以下几个毫伏处,并先于全爆发峰的发放。通过结合体内(包括动态钳位实验)在小鼠脊髓运动神经元中的细胞内记录和建模,我们表明亚阈振荡是由于峰电流引起的,并且 MMOs 每次出现时,细胞膜都处于低兴奋性状态。缓慢的动力学过程对这种低兴奋性有很大的贡献。在小鼠运动神经元中经常观察到的 I-F 关系中的顺时针滞后,主要是由于钠离子电流的大量缓慢失活。因此,用于爆发的钠离子电流减少。这解释了为什么在显示顺时针滞后的运动神经元中存在具有大量振荡的大亚阈发放范围。在 I-F 曲线表现出逆时针滞后的运动神经元中,缓慢失活可能在较短的时间尺度上起作用,并且被后超极化(AHP)电流的去失活作用大大降低,从而导致更兴奋的状态。这解释了为什么在这些运动神经元中仅看到少数几个 MMO 的短亚阈发放范围。我们的研究揭示了 AHP 电流的新作用,它通过抵消钠离子电流的缓慢失活来设置细胞膜兴奋性水平,并允许或排除 MMOs 的出现。

相似文献

引用本文的文献

7
8
Classification of bursting patterns: A tale of two ducks.爆发模式的分类:两只鸭子的故事。
PLoS Comput Biol. 2022 Feb 24;18(2):e1009752. doi: 10.1371/journal.pcbi.1009752. eCollection 2022 Feb.

本文引用的文献

10
Frequency-current relationships of rat hindlimb alpha-motoneurones.大鼠后肢α运动神经元的频率-电流关系
J Physiol. 2006 Jun 15;573(Pt 3):663-77. doi: 10.1113/jphysiol.2006.107292. Epub 2006 Apr 13.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验