Zheng Wenjun
Department of Physics, University at Buffalo, State University of New York, Buffalo, New York 14260-1500, USA.
Biophys J. 2008 May 15;94(10):3853-7. doi: 10.1529/biophysj.107.125831. Epub 2008 Jan 30.
Coarse-grained elastic models with a C(alpha)-only representation and harmonic interactions have been increasingly used to describe the conformational motions and flexibility of various proteins. In this work, we will unify two complementary elastic models--the elastic network model (ENM) and the Gaussian network model (GNM), in the framework of a generalized anisotropic network model (G-ANM) with a new anisotropy parameter, f(anm). The G-ANM is reduced to GNM at f(anm) = 1, and ENM at f(anm) = 0. By analyzing a list of protein crystal structure pairs using G-ANM, we have attained optimal descriptions of both the isotropic thermal fluctuations and the crystallographically observed conformational changes with a small f(anm) (f(anm) < or = 0.1) and a physically realistic cutoff distance, R(c) approximately 8 A. Thus, the G-ANM improves the performance of GNM and ENM while preserving their simplicity. The properly parameterized G-ANM will enable more accurate and realistic modeling of protein conformational motions and flexibility.
具有仅含Cα表示和简谐相互作用的粗粒度弹性模型已越来越多地用于描述各种蛋白质的构象运动和柔韧性。在这项工作中,我们将在具有新的各向异性参数f(anm)的广义各向异性网络模型(G-ANM)框架内,统一两种互补的弹性模型——弹性网络模型(ENM)和高斯网络模型(GNM)。当f(anm) = 1时,G-ANM简化为GNM;当f(anm) = 0时,G-ANM简化为ENM。通过使用G-ANM分析一系列蛋白质晶体结构对,我们用较小的f(anm)(f(anm)≤0.1)和符合物理实际的截止距离R(c)≈8 Å,获得了对各向同性热涨落和晶体学观测到的构象变化的最佳描述。因此,G-ANM在保持GNM和ENM简单性的同时提高了它们的性能。参数化适当的G-ANM将能够对蛋白质构象运动和柔韧性进行更准确和实际的建模。