Suppr超能文献

用于蛋白质波动动力学和构象变化的广义弹簧张量模型。

Generalized spring tensor models for protein fluctuation dynamics and conformation changes.

作者信息

Lin Tu-Liang, Song Guang

机构信息

Computer Science Department, Iowa State University, 226 Atanasoff Hall, Ames, IA 50011, USA.

出版信息

BMC Struct Biol. 2010 May 17;10 Suppl 1(Suppl 1):S3. doi: 10.1186/1472-6807-10-S1-S3.

Abstract

BACKGROUND

In the last decade, various coarse-grained elastic network models have been developed to study the large-scale motions of proteins and protein complexes where computer simulations using detailed all-atom models are not feasible. Among these models, the Gaussian Network Model (GNM) and Anisotropic Network Model (ANM) have been widely used. Both models have strengths and limitations. GNM can predict the relative magnitudes of protein fluctuations well, but due to its isotropy assumption, it can not be applied to predict the directions of the fluctuations. In contrast, ANM adds the ability to do the latter, but loses a significant amount of precision in the prediction of the magnitudes.

RESULTS

In this article, we develop a single model, called generalized spring tensor model (STeM), that is able to predict well both the magnitudes and the directions of the fluctuations. Specifically, STeM performs equally well in B-factor predictions as GNM and has the ability to predict the directions of fluctuations as ANM. This is achieved by employing a physically more realistic potential, the Go-like potential. The potential, which is more sophisticated than that of either GNM or ANM, though adds complexity to the derivation process of the Hessian matrix (which fortunately has been done once for all and the MATLAB code is freely available electronically at http://www.cs.iastate.edu/~gsong/STeM), causes virtually no performance slowdown.

CONCLUSIONS

Derived from a physically more realistic potential, STeM proves to be a natural solution in which advantages that used to exist in two separate models, namely GNM and ANM, are achieved in one single model. It thus lightens the burden to work with two separate models and to relate the modes of GNM with those of ANM at times. By examining the contributions of different interaction terms in the Gō potential to the fluctuation dynamics, STeM reveals, (i) a physical explanation for why the distance-dependent, inverse distance square (i.e., 1/(r)2) spring constants perform better than the uniform ones, and (ii), the importance of three-body and four-body interactions to properly modeling protein dynamics.

摘要

背景

在过去十年中,已开发出各种粗粒度弹性网络模型来研究蛋白质和蛋白质复合物的大规模运动,而使用详细全原子模型进行计算机模拟是不可行的。在这些模型中,高斯网络模型(GNM)和各向异性网络模型(ANM)已被广泛使用。这两种模型都有优点和局限性。GNM能很好地预测蛋白质波动的相对幅度,但由于其各向同性假设,它不能用于预测波动方向。相比之下,ANM增加了预测波动方向的能力,但在幅度预测中失去了大量精度。

结果

在本文中,我们开发了一个单一模型,称为广义弹簧张量模型(STeM),它能够很好地预测波动的幅度和方向。具体而言,STeM在B因子预测方面与GNM表现相当,并且具有像ANM一样预测波动方向的能力。这是通过采用一种物理上更现实的势,即类Gō势来实现的。该势比GNM或ANM的势更复杂,尽管它增加了海森矩阵推导过程的复杂性(幸运的是,这已经一次性完成,并且MATLAB代码可在http://www.cs.iastate.edu/~gsong/STeM上免费电子获取),但几乎不会导致性能下降。

结论

STeM源自物理上更现实的势,被证明是一种自然的解决方案,其中以前存在于两个单独模型(即GNM和ANM)中的优点在一个单一模型中得以实现。因此,它减轻了使用两个单独模型以及有时将GNM的模式与ANM的模式相关联的负担。通过研究Gō势中不同相互作用项对波动动力学的贡献,STeM揭示了:(i)距离依赖的、反距离平方(即1/(r)2)弹簧常数比均匀弹簧常数表现更好的物理解释;(ii)三体和四体相互作用对正确模拟蛋白质动力学的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f22/2873826/d9fd35211744/1472-6807-10-S1-S3-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验