Department of Chemistry and ‡Department of Materials Science and Engineering University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States.
ACS Appl Mater Interfaces. 2014 Mar 12;6(5):3721-8. doi: 10.1021/am500026a. Epub 2014 Feb 4.
Enhancement of the charge transfer rate in CdSe quantum dot (QD) sensitized solar cells is one of the most important criteria determining cell efficiency. We report a novel strategy for enhancing charge transfer by exchanging the native, long organic chain to an atomic ligand, S(2-), with a simple solid exchange process. S(2-)-ligand exchange is easily executed by dipping the CdSe QDs sensitized photoanode into a formamide solution of K2S. The results show that this exchange process leads to an enhancement of the electronic coupling between CdSe QD and TiO2 by removing the insulating organic barrier to charge transfer, while maintaining its quantum confined band structure. This treatment significantly increases the charge transfer rate at the interfacial region between CdSe QDs and TiO2 as well as between the CdSe QDs and Red/Ox coupling electrolyte, as verified by time-resolved photoluminescence and electrochemical impedance spectroscopy measurements. Finally, the S(2-)-treated photoanode exhibits a much higher photovoltaic performance than the conventional MPA or TGA-capped CdSe QDs sensitized solar cell. The findings reported herein propose an innovative route toward harvesting energy from solar light by enhancing the carrier charge transfer rate.
提高 CdSe 量子点 (QD) 敏化太阳能电池的电荷转移速率是决定电池效率的最重要标准之一。我们报告了一种通过用原子配体 S(2-) 取代原有的长有机链来增强电荷转移的新策略,该策略通过简单的固-液交换过程来实现。S(2-)配体交换可以通过将 CdSe QD 敏化光阳极浸入 K2S 的甲酰胺溶液中来轻松进行。结果表明,该交换过程通过去除电荷转移的绝缘有机障碍,增强了 CdSe QD 和 TiO2 之间的电子耦合,同时保持其量子受限能带结构。正如通过时间分辨光致发光和电化学阻抗谱测量所证实的那样,这种处理显著提高了 CdSe QD 和 TiO2 之间以及 CdSe QD 和 Red/Ox 偶联电解质之间的电荷转移速率。最后,经过 S(2-)处理的光阳极表现出比传统的 MPA 或 TGA 封端的 CdSe QD 敏化太阳能电池更高的光伏性能。本文报道的结果提出了一种通过提高载流子电荷转移速率来从太阳能中收集能量的创新途径。