Suppr超能文献

通过调节界面电荷转移来提高量子点敏化太阳能电池的效率。

Boosting the efficiency of quantum dot sensitized solar cells through modulation of interfacial charge transfer.

机构信息

Radiation Laboratory, Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA.

出版信息

Acc Chem Res. 2012 Nov 20;45(11):1906-15. doi: 10.1021/ar200315d. Epub 2012 Apr 11.

Abstract

The demand for clean energy will require the design of nanostructure-based light-harvesting assemblies for the conversion of solar energy into chemical energy (solar fuels) and electrical energy (solar cells). Semiconductor nanocrystals serve as the building blocks for designing next generation solar cells, and metal chalcogenides (e.g., CdS, CdSe, PbS, and PbSe) are particularly useful for harnessing size-dependent optical and electronic properties in these nanostructures. This Account focuses on photoinduced electron transfer processes in quantum dot sensitized solar cells (QDSCs) and discusses strategies to overcome the limitations of various interfacial electron transfer processes. The heterojunction of two semiconductor nanocrystals with matched band energies (e.g., TiO(2) and CdSe) facilitates charge separation. The rate at which these separated charge carriers are driven toward opposing electrodes is a major factor that dictates the overall photocurrent generation efficiency. The hole transfer at the semiconductor remains a major bottleneck in QDSCs. For example, the rate constant for hole transfer is 2-3 orders of magnitude lower than the electron injection from excited CdSe into oxide (e.g., TiO(2)) semiconductor. Disparity between the electron and hole scavenging rate leads to further accumulation of holes within the CdSe QD and increases the rate of electron-hole recombination. To overcome the losses due to charge recombination processes at the interface, researchers need to accelerate electron and hole transport. The power conversion efficiency for liquid junction and solid state quantum dot solar cells, which is in the range of 5-6%, represents a significant advance toward effective utilization of nanomaterials for solar cells. The design of new semiconductor architectures could address many of the issues related to modulation of various charge transfer steps. With the resolution of those problems, the efficiencies of QDSCs could approach those of dye sensitized solar cells (DSSC) and organic photovoltaics.

摘要

对清洁能源的需求要求设计基于纳米结构的光收集组件,以将太阳能转化为化学能(太阳能燃料)和电能(太阳能电池)。半导体纳米晶体可作为设计下一代太阳能电池的基础,而金属硫属化物(例如,CdS、CdSe、PbS 和 PbSe)在利用这些纳米结构中尺寸相关的光学和电子特性方面特别有用。本账户重点介绍量子点敏化太阳能电池(QDSC)中的光诱导电子转移过程,并讨论了克服各种界面电子转移过程限制的策略。两种具有匹配能带能量的半导体纳米晶体的异质结(例如,TiO2 和 CdSe)有利于电荷分离。这些分离电荷载流子被驱动到相反电极的速率是决定整体光电流产生效率的主要因素。半导体中的空穴转移仍然是 QDSC 的主要瓶颈。例如,空穴转移的速率常数比从激发的 CdSe 到氧化物(例如,TiO2)半导体的电子注入低 2-3 个数量级。电子和空穴捕获率之间的差异导致 CdSe QD 内空穴的进一步积累,并增加电子-空穴复合的速率。为了克服界面处电荷复合过程引起的损耗,研究人员需要加速电子和空穴的传输。液体结和固态量子点太阳能电池的功率转换效率在 5-6%范围内,这代表了朝着有效利用纳米材料制造太阳能电池的重要进展。新半导体架构的设计可以解决与各种电荷转移步骤调制相关的许多问题。解决这些问题后,QDSC 的效率可以接近染料敏化太阳能电池(DSSC)和有机光伏的效率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验