Suppr超能文献

DLL1 的 S/T 磷酸化对于体外完全配体活性是必需的,但在胚胎模式形成和边缘区 B 细胞发育过程中对于 DLL1 功能是可有可无的。

S/T phosphorylation of DLL1 is required for full ligand activity in vitro but dispensable for DLL1 function in vivo during embryonic patterning and marginal zone B cell development.

机构信息

Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany.

出版信息

Mol Cell Biol. 2014 Apr;34(7):1221-33. doi: 10.1128/MCB.00965-13. Epub 2014 Jan 21.

Abstract

Interaction of Notch receptors with Delta- and Serrate-type ligands is an evolutionarily conserved mechanism that mediates direct communication between adjacent cells and thereby regulates multiple developmental processes. Posttranslational modifications of both receptors and ligands are pivotal for normal Notch pathway function. We have identified by mass spectrometric analysis two serine and one threonine phosphorylation sites in the intracellular domain of the mouse Notch ligand DLL1. Phosphorylation requires cell membrane association of DLL1 and occurs sequentially at the two serine residues. Phosphorylation of one serine residue most likely by protein kinase B primes phosphorylation of the other serine. A DLL1 variant, in which all three identified phosphorylated serine/threonine residues are mutated to alanine and valine, was more stable than wild-type DLL1 but had reduced relative levels on the cell surface and was more effectively cleaved in the extracellular domain. In addition, the mutant variant activated Notch1 significantly less efficient than wild-type DLL1 in a coculture assay in vitro. Mice, however, whose endogenous DLL1 was replaced with the phosphorylation-deficient triple mutant developed normally, suggesting compensatory mechanisms under physiological conditions in vivo.

摘要

Notch 受体与 Delta 和 Serrate 型配体的相互作用是一种进化上保守的机制,它介导相邻细胞之间的直接通讯,从而调节多种发育过程。受体和配体的翻译后修饰对于 Notch 通路的正常功能至关重要。我们通过质谱分析在小鼠 Notch 配体 DLL1 的细胞内结构域中鉴定出两个丝氨酸和一个苏氨酸磷酸化位点。磷酸化需要 DLL1 与细胞膜的结合,并在两个丝氨酸残基上依次发生。一个丝氨酸残基的磷酸化(很可能由蛋白激酶 B 引起)为另一个丝氨酸的磷酸化做准备。与野生型 DLL1 相比,突变所有三个鉴定出的磷酸化丝氨酸/苏氨酸残基为丙氨酸和缬氨酸的 DLL1 变体更稳定,但在细胞表面的相对水平降低,并且在细胞外结构域中更容易被切割。此外,在体外共培养实验中,突变变体激活 Notch1 的效率明显低于野生型 DLL1。然而,用缺乏磷酸化的三重突变体替代内源性 DLL1 的小鼠正常发育,这表明在体内生理条件下存在补偿机制。

相似文献

4
Proteolytic processing of delta-like 1 by ADAM proteases.ADAM蛋白酶对delta样蛋白1的蛋白水解加工。
J Biol Chem. 2007 Jan 5;282(1):436-44. doi: 10.1074/jbc.M605451200. Epub 2006 Nov 15.

引用本文的文献

2
Decoding the PTM-switchboard of Notch.解析 Notch 的 PTM 开关。
Biochim Biophys Acta Mol Cell Res. 2019 Dec;1866(12):118507. doi: 10.1016/j.bbamcr.2019.07.002. Epub 2019 Jul 11.

本文引用的文献

5
Notch and disease: a growing field.Notch 与疾病:一个不断发展的领域。
Semin Cell Dev Biol. 2012 Jun;23(4):473-80. doi: 10.1016/j.semcdb.2012.02.005. Epub 2012 Feb 20.
6
Notch ligand ubiquitylation: what is it good for?Notch 配体泛素化:有何作用?
Dev Cell. 2011 Jul 19;21(1):134-44. doi: 10.1016/j.devcel.2011.06.006.
7
Mechanisms of T cell development and transformation.T 细胞发育和转化的机制。
Annu Rev Cell Dev Biol. 2011;27:539-62. doi: 10.1146/annurev-cellbio-092910-154008. Epub 2011 Jul 5.
10
Notch signaling in the immune system. Notch 信号在免疫系统中的作用。
Immunity. 2010 Jan 29;32(1):14-27. doi: 10.1016/j.immuni.2010.01.004.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验