Suppr超能文献

膜黏附决定高尔基体堆叠和小泡形态。

Membrane adhesion dictates Golgi stacking and cisternal morphology.

机构信息

Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520.

出版信息

Proc Natl Acad Sci U S A. 2014 Feb 4;111(5):1849-54. doi: 10.1073/pnas.1323895111. Epub 2014 Jan 21.

Abstract

Two classes of proteins that bind to each other and to Golgi membranes have been implicated in the adhesion of Golgi cisternae to each other to form their characteristic stacks: Golgi reassembly and stacking proteins 55 and 65 (GRASP55 and GRASP65) and Golgin of 45 kDa and Golgi matrix protein of 130 kDa. We report here that efficient stacking occurs in the absence of GRASP65/55 when either Golgin is overexpressed, as judged by quantitative electron microscopy. The Golgi stacks in these GRASP-deficient HeLa cells were normal both in morphology and in anterograde cargo transport. This suggests the simple hypothesis that the total amount of adhesive energy gluing cisternae dictates Golgi cisternal stacking, irrespective of which molecules mediate the adhesive process. In support of this hypothesis, we show that adding artificial adhesive energy between cisternae and mitochondria by dimerizing rapamycin-binding domain and FK506-binding protein domains that are attached to cisternal adhesive proteins allows mitochondria to invade the stack and even replace Golgi cisternae within a few hours. These results indicate that although Golgi stacking is a highly complicated process involving a large number of adhesive and regulatory proteins, the overriding principle of a Golgi stack assembly is likely to be quite simple. From this simplified perspective, we propose a model, based on cisternal adhesion and cisternal maturation as the two core principles, illustrating how the most ancient form of Golgi stacking might have occurred using only weak cisternal adhesive processes because of the differential between the rate of influx and outflux of membrane transport through the Golgi.

摘要

两类能够彼此结合并与高尔基体膜结合的蛋白质被认为与高尔基体潴泡之间的黏附有关,从而形成其特征性的堆叠:高尔基体重组和堆叠蛋白 55 和 65(GRASP55 和 GRASP65)以及 45kDa 的高尔基体蛋白和 130kDa 的高尔基体基质蛋白。我们在此报告,当过量表达其中任何一种蛋白时,即使没有 GRASP65/55 的参与,高尔基体的堆叠也能有效发生,这可以通过定量电子显微镜来判断。在这些缺乏 GRASP 的 HeLa 细胞中,高尔基体堆叠无论是在形态还是在正向货物运输方面都是正常的。这表明了一个简单的假设,即黏附质将潴泡黏合在一起的总黏附能量决定了高尔基体潴泡的堆叠,而不管是哪种分子介导了黏附过程。为了支持这个假设,我们表明通过将 rapamycin 结合结构域和 FK506 结合蛋白的二聚体添加到潴泡黏附蛋白上,在潴泡和线粒体之间人为地增加黏附能量,使线粒体能够侵入堆叠,甚至在数小时内取代高尔基体潴泡。这些结果表明,尽管高尔基体的堆叠是一个涉及大量黏附和调节蛋白的高度复杂的过程,但高尔基体堆叠组装的首要原则可能非常简单。从这个简化的角度来看,我们提出了一个模型,基于潴泡黏附和潴泡成熟作为两个核心原则,说明了在膜运输通过高尔基体的流入和流出率存在差异的情况下,仅使用较弱的潴泡黏附过程,最古老的高尔基体堆叠形式是如何发生的。

相似文献

1
Membrane adhesion dictates Golgi stacking and cisternal morphology.膜黏附决定高尔基体堆叠和小泡形态。
Proc Natl Acad Sci U S A. 2014 Feb 4;111(5):1849-54. doi: 10.1073/pnas.1323895111. Epub 2014 Jan 21.

引用本文的文献

3
Golgi defect as a major contributor to lysosomal dysfunction.高尔基体缺陷是导致溶酶体功能障碍的主要因素。
Front Cell Dev Biol. 2024 Apr 24;12:1386149. doi: 10.3389/fcell.2024.1386149. eCollection 2024.
6
Retro-2 alters Golgi structure. Retro-2 改变了高尔基体结构。
Sci Rep. 2022 Sep 2;12(1):14975. doi: 10.1038/s41598-022-19415-x.

本文引用的文献

1
Modular organization of the mammalian Golgi apparatus.哺乳动物高尔基体的模块化组织。
Curr Opin Cell Biol. 2012 Aug;24(4):467-74. doi: 10.1016/j.ceb.2012.05.009. Epub 2012 Jun 20.
2
Golgi biogenesis.高尔基复合体生物发生。
Cold Spring Harb Perspect Biol. 2011 Oct 1;3(10):a005330. doi: 10.1101/cshperspect.a005330.
4
Biogenesis of the plant Golgi apparatus.植物高尔基体的生物发生。
Biochem Soc Trans. 2010 Jun;38(3):761-7. doi: 10.1042/BST0380761.
5
Dual anchoring of the GRASP membrane tether promotes trans pairing.GRASP 膜系绳的双重锚定促进了跨配对。
J Biol Chem. 2010 May 21;285(21):16294-301. doi: 10.1074/jbc.M110.116129. Epub 2010 Mar 12.
10
Golgins and GRASPs: holding the Golgi together.高尔基体蛋白和GRASPs:维系高尔基体的结构完整性
Semin Cell Dev Biol. 2009 Sep;20(7):770-9. doi: 10.1016/j.semcdb.2009.03.011.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验