Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520.
Proc Natl Acad Sci U S A. 2014 Feb 4;111(5):1849-54. doi: 10.1073/pnas.1323895111. Epub 2014 Jan 21.
Two classes of proteins that bind to each other and to Golgi membranes have been implicated in the adhesion of Golgi cisternae to each other to form their characteristic stacks: Golgi reassembly and stacking proteins 55 and 65 (GRASP55 and GRASP65) and Golgin of 45 kDa and Golgi matrix protein of 130 kDa. We report here that efficient stacking occurs in the absence of GRASP65/55 when either Golgin is overexpressed, as judged by quantitative electron microscopy. The Golgi stacks in these GRASP-deficient HeLa cells were normal both in morphology and in anterograde cargo transport. This suggests the simple hypothesis that the total amount of adhesive energy gluing cisternae dictates Golgi cisternal stacking, irrespective of which molecules mediate the adhesive process. In support of this hypothesis, we show that adding artificial adhesive energy between cisternae and mitochondria by dimerizing rapamycin-binding domain and FK506-binding protein domains that are attached to cisternal adhesive proteins allows mitochondria to invade the stack and even replace Golgi cisternae within a few hours. These results indicate that although Golgi stacking is a highly complicated process involving a large number of adhesive and regulatory proteins, the overriding principle of a Golgi stack assembly is likely to be quite simple. From this simplified perspective, we propose a model, based on cisternal adhesion and cisternal maturation as the two core principles, illustrating how the most ancient form of Golgi stacking might have occurred using only weak cisternal adhesive processes because of the differential between the rate of influx and outflux of membrane transport through the Golgi.
两类能够彼此结合并与高尔基体膜结合的蛋白质被认为与高尔基体潴泡之间的黏附有关,从而形成其特征性的堆叠:高尔基体重组和堆叠蛋白 55 和 65(GRASP55 和 GRASP65)以及 45kDa 的高尔基体蛋白和 130kDa 的高尔基体基质蛋白。我们在此报告,当过量表达其中任何一种蛋白时,即使没有 GRASP65/55 的参与,高尔基体的堆叠也能有效发生,这可以通过定量电子显微镜来判断。在这些缺乏 GRASP 的 HeLa 细胞中,高尔基体堆叠无论是在形态还是在正向货物运输方面都是正常的。这表明了一个简单的假设,即黏附质将潴泡黏合在一起的总黏附能量决定了高尔基体潴泡的堆叠,而不管是哪种分子介导了黏附过程。为了支持这个假设,我们表明通过将 rapamycin 结合结构域和 FK506 结合蛋白的二聚体添加到潴泡黏附蛋白上,在潴泡和线粒体之间人为地增加黏附能量,使线粒体能够侵入堆叠,甚至在数小时内取代高尔基体潴泡。这些结果表明,尽管高尔基体的堆叠是一个涉及大量黏附和调节蛋白的高度复杂的过程,但高尔基体堆叠组装的首要原则可能非常简单。从这个简化的角度来看,我们提出了一个模型,基于潴泡黏附和潴泡成熟作为两个核心原则,说明了在膜运输通过高尔基体的流入和流出率存在差异的情况下,仅使用较弱的潴泡黏附过程,最古老的高尔基体堆叠形式是如何发生的。