Suppr超能文献

酵母 GRASP Grh1 与 COPII 共定位,对于组织分泌途径不是必需的。

The yeast GRASP Grh1 colocalizes with COPII and is dispensable for organizing the secretory pathway.

机构信息

Department of Molecular Genetics and Cell Biology, The University of Chicago, 920 East 58th Street, Chicago, IL 60637, USA.

出版信息

Traffic. 2010 Sep;11(9):1168-79. doi: 10.1111/j.1600-0854.2010.01089.x. Epub 2010 Jun 21.

Abstract

In mammalian cells, the 'Golgi reassembly and stacking protein' (GRASP) family has been implicated in Golgi stacking, but the broader functions of GRASP proteins are still unclear. The yeast Saccharomyces cerevisiae contains a single non-essential GRASP homolog called Grh1. However, Golgi cisternae in S. cerevisiae are not organized into stacks, so a possible structural role for Grh1 has been difficult to test. Here, we examined the localization and function of Grh1 in S. cerevisiae and in the related yeast Pichia pastoris, which has stacked Golgi cisternae. In agreement with earlier studies indicating that Grh1 interacts with coat protein II (COPII) vesicle coat proteins, we find that Grh1 colocalizes with COPII at transitional endoplasmic reticulum (tER) sites in both yeasts. Deletion of P. pastoris Grh1 had no obvious effect on the structure of tER-Golgi units. To test the role of S. cerevisiae Grh1, we exploited the observation that inhibiting ER export in S. cerevisiae generates enlarged tER sites that are often associated with the cis Golgi. This tER-Golgi association was preserved in the absence of Grh1. The combined data suggest that Grh1 acts early in the secretory pathway, but is dispensable for the organization of secretory compartments.

摘要

在哺乳动物细胞中,“高尔基重组和堆积蛋白”(GRASP)家族被认为与高尔基体堆叠有关,但 GRASP 蛋白的更广泛功能仍不清楚。酵母酿酒酵母只含有一种称为 Grh1 的非必需的 GRASP 同源物。然而,酿酒酵母的高尔基潴泡并没有组织成堆叠,因此 Grh1 的可能结构作用很难测试。在这里,我们研究了 Grh1 在酿酒酵母和相关酵母毕赤酵母中的定位和功能,毕赤酵母具有堆叠的高尔基潴泡。与早先的研究表明 Grh1 与衣壳蛋白 II(COPII)囊泡衣壳蛋白相互作用一致,我们发现 Grh1 在两种酵母中的过渡内质网(tER)位点与 COPII 共定位。毕赤酵母 Grh1 的缺失对 tER-高尔基体单位的结构没有明显影响。为了测试酿酒酵母 Grh1 的作用,我们利用了以下观察结果:在酿酒酵母中抑制 ER 输出会产生扩大的 tER 位点,这些位点通常与顺面高尔基体相关。在没有 Grh1 的情况下,这种 tER-高尔基体的关联得以保留。综合数据表明,Grh1 早期在分泌途径中发挥作用,但对于分泌隔室的组织是可有可无的。

相似文献

1
The yeast GRASP Grh1 colocalizes with COPII and is dispensable for organizing the secretory pathway.
Traffic. 2010 Sep;11(9):1168-79. doi: 10.1111/j.1600-0854.2010.01089.x. Epub 2010 Jun 21.
4
Remodeling of secretory compartments creates CUPS during nutrient starvation.
J Cell Biol. 2014 Dec 22;207(6):695-703. doi: 10.1083/jcb.201407119. Epub 2014 Dec 15.
5
The transitional ER localization mechanism of Pichia pastoris Sec12.
Dev Cell. 2004 May;6(5):649-59. doi: 10.1016/s1534-5807(04)00129-7.
6
Sec16 is a determinant of transitional ER organization.
Curr Biol. 2005 Aug 23;15(16):1439-47. doi: 10.1016/j.cub.2005.06.065.
8
Auxilin facilitates membrane traffic in the early secretory pathway.
Mol Biol Cell. 2016 Jan 1;27(1):127-36. doi: 10.1091/mbc.E15-09-0631. Epub 2015 Nov 4.
9
Sit4p/PP6 regulates ER-to-Golgi traffic by controlling the dephosphorylation of COPII coat subunits.
Mol Biol Cell. 2013 Sep;24(17):2727-38. doi: 10.1091/mbc.E13-02-0114. Epub 2013 Jul 17.

引用本文的文献

2
Unconventional Protein Secretion in Brain Tumors Biology: Enlightening the Mechanisms for Tumor Survival and Progression.
Front Cell Dev Biol. 2022 Jun 15;10:907423. doi: 10.3389/fcell.2022.907423. eCollection 2022.
4
GRASP55 restricts early-stage autophagy and regulates spatial organization of the early secretory network.
Biol Open. 2021 Oct 15;10(10). doi: 10.1242/bio.058736. Epub 2021 Oct 12.
5
Nonredundant Roles of GRASP55 and GRASP65 in the Golgi Apparatus and Beyond.
Trends Biochem Sci. 2020 Dec;45(12):1065-1079. doi: 10.1016/j.tibs.2020.08.001. Epub 2020 Sep 4.
6
A minimal self-organisation model of the Golgi apparatus.
Elife. 2020 Aug 5;9:e47318. doi: 10.7554/eLife.47318.
7
The function of GORASPs in Golgi apparatus organization in vivo.
J Cell Biol. 2020 Sep 7;219(9). doi: 10.1083/jcb.202004191.
8
ER arrival sites associate with ER exit sites to create bidirectional transport portals.
J Cell Biol. 2020 Apr 6;219(4). doi: 10.1083/jcb.201902114.
9
Golgin45-Syntaxin5 Interaction Contributes to Structural Integrity of the Golgi Stack.
Sci Rep. 2019 Aug 28;9(1):12465. doi: 10.1038/s41598-019-48875-x.
10
Maturation-driven transport and AP-1-dependent recycling of a secretory cargo in the Golgi.
J Cell Biol. 2019 May 6;218(5):1582-1601. doi: 10.1083/jcb.201807195. Epub 2019 Mar 11.

本文引用的文献

1
Dual anchoring of the GRASP membrane tether promotes trans pairing.
J Biol Chem. 2010 May 21;285(21):16294-301. doi: 10.1074/jbc.M110.116129. Epub 2010 Mar 12.
2
Requirements for transitional endoplasmic reticulum site structure and function in Saccharomyces cerevisiae.
Mol Biol Cell. 2010 May 1;21(9):1530-45. doi: 10.1091/mbc.e09-07-0605. Epub 2010 Mar 3.
3
Unconventional secretion of Acb1 is mediated by autophagosomes.
J Cell Biol. 2010 Feb 22;188(4):527-36. doi: 10.1083/jcb.200911154. Epub 2010 Feb 15.
5
GRASP55 and GRASP65 play complementary and essential roles in Golgi cisternal stacking.
J Cell Biol. 2010 Jan 25;188(2):237-51. doi: 10.1083/jcb.200907132. Epub 2010 Jan 18.
6
The yeast Golgi apparatus: insights and mysteries.
FEBS Lett. 2009 Dec 3;583(23):3746-51. doi: 10.1016/j.febslet.2009.10.072. Epub 2009 Oct 29.
7
GRASP65 and GRASP55 sequentially promote the transport of C-terminal valine-bearing cargos to and through the Golgi complex.
J Biol Chem. 2009 Dec 11;284(50):34849-60. doi: 10.1074/jbc.M109.068403. Epub 2009 Oct 19.
8
Evolution and diversity of the Golgi body.
FEBS Lett. 2009 Dec 3;583(23):3738-45. doi: 10.1016/j.febslet.2009.10.025. Epub 2009 Oct 20.
9
Golgins and GRASPs: holding the Golgi together.
Semin Cell Dev Biol. 2009 Sep;20(7):770-9. doi: 10.1016/j.semcdb.2009.03.011.
10
Ultrastructural study of Golgi duplication in Trypanosoma brucei.
Traffic. 2009 Mar;10(3):300-6. doi: 10.1111/j.1600-0854.2008.00873.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验