Suppr超能文献

个体化生殖医学的前沿:进展、机遇与挑战。

Personalized reproductive medicine on the brink: progress, opportunities and challenges ahead.

出版信息

Reprod Biomed Online. 2013 Dec;27(6):611-23. doi: 10.1016/j.rbmo.2013.09.010.

Abstract

Significant progress has been made in several fields of medicine towards personalizing treatment recommendations based on individual patient genotype. As the number of clinical and genetic biomarkers available to physicians has increased, predictive models able to integrate the contributions of multiple variables simultaneously have become valuable tools for medical decision making. Leveraging genotype information and multivariate predictive models holds the promise of bringing greater efficiency to, and reducing the costs of, fertility treatments. This work reviews the advances that have been made in genetic biomarker discovery and predictive modelling for fertility treatment outcomes. We also discuss some of the limitations of these studies for translation to clinical diagnostics and the challenges that remain.Personalized medicine holds the promise of allowing doctors to create 'bespoke' treatment recommendations for each patient based on multiple clinical variables such as age and hormone concentrations combined with the patient's genetic sequence information. A number of challenges remain for the field of reproductive medicine to make the research discoveries necessary to usher in this new era of personalized fertility care. Here, we discuss some of these challenges and make recommendations for overcoming them.

摘要

在医学的几个领域,根据个体患者的基因型来定制治疗建议已经取得了重大进展。随着可供医生使用的临床和遗传生物标志物数量的增加,能够同时整合多个变量贡献的预测模型已成为医疗决策的有价值工具。利用基因型信息和多变量预测模型有望提高生育治疗的效率并降低成本。这项工作回顾了在生育治疗结果的遗传生物标志物发现和预测建模方面取得的进展。我们还讨论了这些研究在转化为临床诊断方面的一些局限性,以及仍然存在的挑战。个性化医疗有望使医生能够根据年龄、激素浓度等多个临床变量以及患者的基因序列信息,为每位患者创建“定制”的治疗建议。生殖医学领域仍面临一些挑战,需要进行必要的研究发现,才能迎来个性化生育护理的新时代。在这里,我们讨论了其中的一些挑战,并提出了克服这些挑战的建议。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验