Suppr超能文献

MutPred剪接:基于机器学习预测破坏剪接的外显子变体。

MutPred Splice: machine learning-based prediction of exonic variants that disrupt splicing.

作者信息

Mort Matthew, Sterne-Weiler Timothy, Li Biao, Ball Edward V, Cooper David N, Radivojac Predrag, Sanford Jeremy R, Mooney Sean D

出版信息

Genome Biol. 2014 Jan 13;15(1):R19. doi: 10.1186/gb-2014-15-1-r19.

Abstract

We have developed a novel machine-learning approach, MutPred Splice, for the identification of coding region substitutions that disrupt pre-mRNA splicing. Applying MutPred Splice to human disease-causing exonic mutations suggests that 16% of mutations causing inherited disease and 10 to 14% of somatic mutations in cancer may disrupt pre-mRNA splicing. For inherited disease, the main mechanism responsible for the splicing defect is splice site loss, whereas for cancer the predominant mechanism of splicing disruption is predicted to be exon skipping via loss of exonic splicing enhancers or gain of exonic splicing silencer elements. MutPred Splice is available at http://mutdb.org/mutpredsplice.

摘要

我们开发了一种新型的机器学习方法MutPred Splice,用于识别破坏前体mRNA剪接的编码区替代。将MutPred Splice应用于人类致病外显子突变表明,导致遗传性疾病的突变中有16%以及癌症中的体细胞突变中有10%至14%可能破坏前体mRNA剪接。对于遗传性疾病,导致剪接缺陷的主要机制是剪接位点缺失,而对于癌症,剪接破坏的主要机制预计是通过外显子剪接增强子的缺失或外显子剪接沉默子元件的获得导致外显子跳跃。可在http://mutdb.org/mutpredsplice获取MutPred Splice。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1a5/4054890/28fdd46f06e6/gb-2014-15-1-r19-1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验