Suppr超能文献

外显子丧失是人类遗传性疾病的常见机制。

Loss of exon identity is a common mechanism of human inherited disease.

机构信息

Department of Molecular, Cellular and Developmental Biology, University of California Santa Cruz, Santa Cruz, California 95064, USA.

出版信息

Genome Res. 2011 Oct;21(10):1563-71. doi: 10.1101/gr.118638.110. Epub 2011 Jul 12.

Abstract

It is widely accepted that at least 10% of all mutations causing human inherited disease disrupt splice-site consensus sequences. In contrast to splice-site mutations, the role of auxiliary cis-acting elements such as exonic splicing enhancers (ESE) and exonic splicing silencers (ESS) in human inherited disease is still poorly understood. Here we use a top-down approach to determine rates of loss or gain of known human exonic splicing regulatory (ESR) sequences associated with either disease-causing mutations or putatively neutral single nucleotide polymorphisms (SNPs). We observe significant enrichment toward loss of ESEs and gain of ESSs among inherited disease-causing variants relative to neutral polymorphisms, indicating that exon skipping may play a prominent role in aberrant gene regulation. Both computational and biochemical approaches underscore the relevance of exonic splicing enhancer loss and silencer gain in inherited disease. Additionally, we provide direct evidence that both SRp20 (SRSF3) and possibly PTB (PTBP1) are involved in the function of a splicing silencer that is created de novo by a total of 83 different inherited disease mutations in 67 different disease genes. Taken together, we find that ~25% (7154/27,681) of known mis-sense and nonsense disease-causing mutations alter functional splicing signals within exons, suggesting a much more widespread role for aberrant mRNA processing in causing human inherited disease than has hitherto been appreciated.

摘要

人们普遍认为,至少有 10%的导致人类遗传性疾病的突变会破坏剪接位点共识序列。与剪接位点突变相比,外显子剪接增强子(ESE)和外显子剪接沉默子(ESS)等辅助顺式作用元件在人类遗传性疾病中的作用仍知之甚少。在这里,我们采用自上而下的方法来确定与致病突变或假定的中性单核苷酸多态性(SNP)相关的已知人类外显子剪接调控(ESR)序列的丢失或获得率。我们观察到,与中性多态性相比,遗传性疾病致病变体中外显子 ESE 的丢失和 ESS 的获得明显富集,这表明外显子跳跃可能在异常基因调控中发挥重要作用。计算和生化方法都强调了外显子剪接增强子丢失和沉默子获得在遗传性疾病中的相关性。此外,我们提供了直接证据表明,SRp20(SRSF3)和可能的 PTB(PTBP1)都参与了由 67 个不同疾病基因中的 83 个不同遗传性疾病突变新形成的剪接沉默子的功能。总之,我们发现,在已知的错义病和无义病致病突变中,约有 25%(7154/27681)改变了外显子内的功能剪接信号,这表明异常的 mRNA 处理在导致人类遗传性疾病中的作用比以前认为的要广泛得多。

相似文献

引用本文的文献

6
Whole genome sequencing in clinical practice.临床实践中的全基因组测序。
BMC Med Genomics. 2024 Jan 29;17(1):39. doi: 10.1186/s12920-024-01795-w.

本文引用的文献

3
Deciphering the splicing code.解读剪接码。
Nature. 2010 May 6;465(7294):53-9. doi: 10.1038/nature09000.
5
NeatMap--non-clustering heat map alternatives in R.NeatMap——R 中的非聚类热图替代方法。
BMC Bioinformatics. 2010 Jan 22;11:45. doi: 10.1186/1471-2105-11-45.
7
Role of RNA structure in regulating pre-mRNA splicing.RNA 结构在调控前体 mRNA 剪接中的作用。
Trends Biochem Sci. 2010 Mar;35(3):169-78. doi: 10.1016/j.tibs.2009.10.004. Epub 2009 Dec 1.
10
RNA and disease.RNA与疾病。
Cell. 2009 Feb 20;136(4):777-93. doi: 10.1016/j.cell.2009.02.011.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验