Suppr超能文献

使用颞中模式神经元的计算机模型模拟组件到模式的动态效应。

Simulating component-to-pattern dynamic effects with a computer model of middle temporal pattern neurons.

作者信息

Perrone John A, Krauzlis Richard J

机构信息

The School of Psychology, University of Waikato, Hamilton, New Zealand.

出版信息

J Vis. 2014 Jan 22;14(1):19. doi: 10.1167/14.1.19.

Abstract

Some primate motion-sensitive middle temporal (MT) neurons respond best to motion orthogonal to a contour's orientation (component types) whereas another class (pattern type) responds maximally to the overall pattern motion. We have previously developed a model of the pattern-type neurons using integration of the activity generated in speed- and direction-tuned subunits. However, a number of other models have also been able to replicate MT neuron pattern-like behavior using a diverse range of mechanisms. This basic property does not really challenge or help discriminate between the different model types. There exist two sets of findings that we believe provide a better yardstick against which to assess MT pattern models. Some MT neurons have been shown to change from component to pattern behavior over brief time intervals. MT neurons have also been observed to switch from component- to pattern-like behavior when the intensity of the intersections in a plaid pattern stimulus changes. These properties suggest more complex time- and contrast-sensitive internal mechanisms underlying pattern motion extraction, which provide a real challenge for modelers. We have now replicated these two component-to-pattern effects using our MT pattern model. It incorporates two types of V1 neurons (sustained and transient), and these have slightly different time delays; this initially favors the component response, thus mimicking the temporal effects. We also discovered that some plaid stimuli contain a contrast asymmetry that depends on the plaid direction and the intensity of the intersections. This causes the model MT pattern units to act as component units.

摘要

一些对运动敏感的灵长类动物颞中回(MT)神经元对与轮廓方向正交的运动(成分类型)反应最佳,而另一类(模式类型)则对整体模式运动反应最大。我们之前使用速度和方向调谐亚单位产生的活动整合,开发了一种模式类型神经元的模型。然而,许多其他模型也能够使用各种不同的机制复制MT神经元的模式样行为。这种基本特性并不能真正挑战或帮助区分不同的模型类型。我们认为有两组发现为评估MT模式模型提供了更好的标准。一些MT神经元已被证明在短时间间隔内会从成分行为转变为模式行为。当方格图案刺激中的交叉点强度变化时,也观察到MT神经元会从成分样行为转变为模式样行为。这些特性表明在模式运动提取背后存在更复杂的时间和对比度敏感的内部机制,这对建模者提出了真正的挑战。我们现在使用我们的MT模式模型复制了这两种从成分到模式的效应。它包含两种类型的V1神经元(持续型和瞬变型),并且它们具有略有不同的时间延迟;这最初有利于成分反应,从而模拟时间效应。我们还发现一些方格刺激包含一种对比度不对称,它取决于方格方向和交叉点的强度。这导致模型MT模式单元表现为成分单元。

相似文献

2
The role of V1 surround suppression in MT motion integration.V1 周边抑制在 MT 运动整合中的作用。
J Neurophysiol. 2010 Jun;103(6):3123-38. doi: 10.1152/jn.00654.2009. Epub 2010 Mar 24.
3
Pattern Motion Processing by MT Neurons.MT 神经元的模式运动处理。
Front Neural Circuits. 2019 Jun 21;13:43. doi: 10.3389/fncir.2019.00043. eCollection 2019.
4
Responses of MST neurons to plaid stimuli.MST 神经元对镶嵌刺激的反应。
J Neurophysiol. 2013 Jul;110(1):63-74. doi: 10.1152/jn.00338.2012. Epub 2013 Apr 17.
9
Aging affects the direction selectivity of MT cells in rhesus monkeys.衰老影响猕猴 MT 细胞的方向选择性。
Neurobiol Aging. 2010 May;31(5):863-73. doi: 10.1016/j.neurobiolaging.2008.06.013. Epub 2008 Aug 1.
10
A Model of Binocular Motion Integration in MT Neurons.MT神经元中双眼运动整合模型
J Neurosci. 2016 Jun 15;36(24):6563-82. doi: 10.1523/JNEUROSCI.3213-15.2016.

本文引用的文献

4
Velocity computation in the primate visual system.灵长类视觉系统中的速度计算
Nat Rev Neurosci. 2008 Sep;9(9):686-95. doi: 10.1038/nrn2472.
7
How MT cells analyze the motion of visual patterns.MT细胞如何分析视觉模式的运动。
Nat Neurosci. 2006 Nov;9(11):1421-31. doi: 10.1038/nn1786. Epub 2006 Oct 15.
9
Structure and function of visual area MT.视觉区域MT的结构与功能。
Annu Rev Neurosci. 2005;28:157-89. doi: 10.1146/annurev.neuro.26.041002.131052.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验