Suppr超能文献

贝叶斯影响分析:一种几何方法。

Bayesian influence analysis: a geometric approach.

作者信息

Zhu Hongtu, Ibrahim Joseph G, Tang Niansheng

机构信息

Department of Biostatistics, CB# 7420, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27516, U.S.A.,

Department of Statistics, Yunnan University, Kunming 650091, P. R. China,

出版信息

Biometrika. 2011 Jun;98(2):307-323. doi: 10.1093/biomet/asr009.

Abstract

In this paper we develop a general framework of Bayesian influence analysis for assessing various perturbation schemes to the data, the prior and the sampling distribution for a class of statistical models. We introduce a perturbation model to characterize these various perturbation schemes. We develop a geometric framework, called the Bayesian perturbation manifold, and use its associated geometric quantities including the metric tensor and geodesic to characterize the intrinsic structure of the perturbation model. We develop intrinsic influence measures and local influence measures based on the Bayesian perturbation manifold to quantify the effect of various perturbations to statistical models. Theoretical and numerical examples are examined to highlight the broad spectrum of applications of this local influence method in a formal Bayesian analysis.

摘要

在本文中,我们开发了一个贝叶斯影响分析的通用框架,用于评估针对一类统计模型的数据、先验和抽样分布的各种扰动方案。我们引入一个扰动模型来刻画这些不同的扰动方案。我们构建了一个称为贝叶斯扰动流形的几何框架,并使用其相关的几何量(包括度量张量和测地线)来刻画扰动模型的内在结构。我们基于贝叶斯扰动流形开发了内在影响度量和局部影响度量,以量化各种扰动对统计模型的影响。通过理论和数值示例来突出这种局部影响方法在形式化贝叶斯分析中的广泛应用。

相似文献

1
Bayesian influence analysis: a geometric approach.
Biometrika. 2011 Jun;98(2):307-323. doi: 10.1093/biomet/asr009.
2
Bayesian local influence for survival models.
Lifetime Data Anal. 2011 Jan;17(1):43-70. doi: 10.1007/s10985-010-9170-0. Epub 2010 Jun 6.
3
Bayesian Sensitivity Analysis of Statistical Models with Missing Data.
Stat Sin. 2014 Apr;24(2):871-896. doi: 10.5705/ss.2012.126.
4
Bayesian influence measures for joint models for longitudinal and survival data.
Biometrics. 2012 Sep;68(3):954-64. doi: 10.1111/j.1541-0420.2012.01745.x. Epub 2012 Mar 4.
5
Local influence for generalized linear models with missing covariates.
Biometrics. 2009 Dec;65(4):1164-74. doi: 10.1111/j.1541-0420.2008.01179.x.
6
PERTURBATION AND SCALED COOK'S DISTANCE.
Ann Stat. 2012;40(2):785-811. doi: 10.1214/12-AOS978.
7
Weyl Prior and Bayesian Statistics.
Entropy (Basel). 2020 Apr 20;22(4):467. doi: 10.3390/e22040467.
8
Geometric Sensitivity Measures for Bayesian Nonparametric Density Estimation Models.
Sankhya Ser A. 2019 Feb;81(1):104-143. doi: 10.1007/s13171-018-0145-7. Epub 2018 Oct 2.
9
A Geometric Variational Approach to Bayesian Inference.
J Am Stat Assoc. 2020;115(530):822-835. doi: 10.1080/01621459.2019.1585253. Epub 2019 Apr 30.
10
Geometry-informed irreversible perturbations for accelerated convergence of Langevin dynamics.
Stat Comput. 2022;32(5):78. doi: 10.1007/s11222-022-10147-6. Epub 2022 Sep 19.

引用本文的文献

1
A Unified Approach for Outliers and Influential Data Detection - The Value of Information in Retrospect.
Stat (Int Stat Inst). 2022 Dec;11(1). doi: 10.1002/sta4.442. Epub 2021 Dec 6.
2
Geometric Sensitivity Measures for Bayesian Nonparametric Density Estimation Models.
Sankhya Ser A. 2019 Feb;81(1):104-143. doi: 10.1007/s13171-018-0145-7. Epub 2018 Oct 2.
4
Bayesian Sensitivity Analysis of Statistical Models with Missing Data.
Stat Sin. 2014 Apr;24(2):871-896. doi: 10.5705/ss.2012.126.
5
Bayesian influence measures for joint models for longitudinal and survival data.
Biometrics. 2012 Sep;68(3):954-64. doi: 10.1111/j.1541-0420.2012.01745.x. Epub 2012 Mar 4.
6
Bayesian local influence for survival models.
Lifetime Data Anal. 2011 Jan;17(1):43-70. doi: 10.1007/s10985-010-9170-0. Epub 2010 Jun 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验