Saha Abhijoy, Kurtek Sebastian
Department of Statistics, The Ohio State University.
Sankhya Ser A. 2019 Feb;81(1):104-143. doi: 10.1007/s13171-018-0145-7. Epub 2018 Oct 2.
We propose a geometric framework to assess global sensitivity in Bayesian nonparametric models for density estimation. We study sensitivity of nonparametric Bayesian models for density estimation, based on Dirichlet-type priors, to perturbations of either the precision parameter or the base probability measure. To quantify the different effects of the perturbations of the parameters and hyperparameters in these models on the posterior, we define three geometrically-motivated global sensitivity measures based on geodesic paths and distances computed under the nonparametric Fisher-Rao Riemannian metric on the space of densities, applied to posterior samples of densities: (1) the Fisher-Rao distance between density averages of posterior samples, (2) the log-ratio of Karcher variances of posterior samples, and (3) the norm of the difference of scaled cumulative eigenvalues of empirical covariance operators obtained from posterior samples. We validate our approach using multiple simulation studies, and consider the problem of sensitivity analysis for Bayesian density estimation models in the context of three real datasets that have previously been studied.
我们提出了一个几何框架,用于评估贝叶斯非参数密度估计模型中的全局敏感性。我们研究基于狄利克雷型先验的非参数贝叶斯密度估计模型对精度参数或基础概率测度扰动的敏感性。为了量化这些模型中参数和超参数的扰动对后验的不同影响,我们基于在密度空间上的非参数费希尔 - 拉奥黎曼度量下计算的测地线和距离,定义了三种基于几何的全局敏感性度量,并将其应用于密度的后验样本:(1)后验样本密度平均值之间的费希尔 - 拉奥距离;(2)后验样本的卡尔彻方差的对数比;(3)从后验样本获得的经验协方差算子的缩放累积特征值之差的范数。我们使用多个模拟研究验证了我们的方法,并在先前研究过的三个真实数据集的背景下考虑了贝叶斯密度估计模型的敏感性分析问题。