Department of Statistics, Yunnan University, Kunming, People's Republic of China.
Department of Human Development and Family Studies, Pennsylvania State University, 413 Biobehavioral Health Building, University Park, PA, 16802, USA.
Psychometrika. 2017 Dec;82(4):875-903. doi: 10.1007/s11336-017-9587-4. Epub 2017 Oct 13.
Many psychological concepts are unobserved and usually represented as latent factors apprehended through multiple observed indicators. When multiple-subject multivariate time series data are available, dynamic factor analysis models with random effects offer one way of modeling patterns of within- and between-person variations by combining factor analysis and time series analysis at the factor level. Using the Dirichlet process (DP) as a nonparametric prior for individual-specific time series parameters further allows the distributional forms of these parameters to deviate from commonly imposed (e.g., normal or other symmetric) functional forms, arising as a result of these parameters' restricted ranges. Given the complexity of such models, a thorough sensitivity analysis is critical but computationally prohibitive. We propose a Bayesian local influence method that allows for simultaneous sensitivity analysis of multiple modeling components within a single fitting of the model of choice. Five illustrations and an empirical example are provided to demonstrate the utility of the proposed approach in facilitating the detection of outlying cases and common sources of misspecification in dynamic factor analysis models, as well as identification of modeling components that are sensitive to changes in the DP prior specification.
许多心理概念是不可观察的,通常通过多个观察指标来表示为潜在因素。当有多主题多变量时间序列数据可用时,具有随机效应的动态因子分析模型通过在因子水平上将因子分析和时间序列分析结合起来,提供了一种建模个体内和个体间变化模式的方法。使用狄利克雷过程 (DP) 作为个体特定时间序列参数的非参数先验,可以进一步允许这些参数的分布形式偏离通常施加的(例如正态或其他对称)功能形式,这是由于这些参数的限制范围造成的。鉴于此类模型的复杂性,彻底的敏感性分析至关重要,但在计算上是不可行的。我们提出了一种贝叶斯局部影响方法,该方法允许在单个选择的模型拟合中同时对多个建模组件进行敏感性分析。提供了五个说明和一个实证示例,以证明所提出方法在促进检测异常情况和动态因子分析模型中常见的误指定源,以及识别对 DP 先验规范变化敏感的建模组件方面的实用性。