文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

银杏:一种用于合成细胞相容性石墨烯的天然还原剂。

Ginkgo biloba: a natural reducing agent for the synthesis of cytocompatible graphene.

机构信息

Department of Animal Biotechnology, Konkuk University, Seoul, South Korea.

出版信息

Int J Nanomedicine. 2014;9:363-77. doi: 10.2147/IJN.S53538. Epub 2014 Jan 7.


DOI:10.2147/IJN.S53538
PMID:24453487
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC3890967/
Abstract

BACKGROUND: Graphene is a novel two-dimensional planar nanocomposite material consisting of rings of carbon atoms with a hexagonal lattice structure. Graphene exhibits unique physical, chemical, mechanical, electrical, elasticity, and cytocompatible properties that lead to many potential biomedical applications. Nevertheless, the water-insoluble property of graphene restricts its application in various aspects of biomedical fields. Therefore, the objective of this work was to find a novel biological approach for an efficient method to synthesize water-soluble and cytocompatible graphene using Ginkgo biloba extract (GbE) as a reducing and stabilizing agent. In addition, we investigated the biocompatibility effects of graphene in MDA-MB-231 human breast cancer cells. MATERIALS AND METHODS: Synthesized graphene oxide (GO) and GbE-reduced GO (Gb-rGO) were characterized using various sequences of techniques: ultraviolet-visible (UV-vis) spectroscopy, Fourier-transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), scanning electron microscopy (SEM), atomic force microscopy (AFM), and Raman spectroscopy. Biocompatibility of GO and Gb-rGO was assessed in human breast cancer cells using a series of assays, including cell viability, apoptosis, and alkaline phosphatase (ALP) activity. RESULTS: The successful synthesis of graphene was confirmed by UV-vis spectroscopy and FTIR. DLS analysis was performed to determine the average size of GO and Gb-rGO. X-ray diffraction studies confirmed the crystalline nature of graphene. SEM was used to investigate the surface morphologies of GO and Gb-rGO. AFM was employed to investigate the morphologies of prepared graphene and the height profile of GO and Gb-rGO. The formation of defects in Gb-rGO was confirmed by Raman spectroscopy. The biocompatibility of the prepared GO and Gb-rGO was investigated using a water-soluble tetrazolium 8 assay on human breast cancer cells. GO exhibited a dose-dependent toxicity, whereas Gb-rGO-treated cells showed significant biocompatibility and increased ALP activity compared to GO. CONCLUSION: In this work, a nontoxic natural reducing agent of GbE was used to prepare soluble graphene. The as-prepared Gb-rGO showed significant biocompatibility with human cancer cells. This simple, cost-effective, and green procedure offers an alternative route for large-scale production of rGO, and could be used for various biomedical applications, such as tissue engineering, drug delivery, biosensing, and molecular imaging.

摘要

背景:石墨烯是一种新型二维平面纳米复合材料,由具有六边形晶格结构的碳原子环组成。石墨烯具有独特的物理、化学、机械、电气、弹性和细胞相容性特性,这导致了其在许多潜在的生物医学应用中的应用。然而,石墨烯的不溶性限制了其在生物医学领域各个方面的应用。因此,本工作的目的是寻找一种新的生物方法,以高效地合成水溶性和细胞相容性的石墨烯,使用银杏叶提取物(GbE)作为还原剂和稳定剂。此外,我们研究了石墨烯在 MDA-MB-231 人乳腺癌细胞中的生物相容性效应。

材料和方法:使用各种技术序列对合成的氧化石墨烯(GO)和银杏叶提取物还原的氧化石墨烯(Gb-rGO)进行了表征:紫外-可见(UV-vis)光谱、傅里叶变换红外光谱(FTIR)、动态光散射(DLS)、扫描电子显微镜(SEM)、原子力显微镜(AFM)和拉曼光谱。通过一系列实验,包括细胞活力、细胞凋亡和碱性磷酸酶(ALP)活性,评估了 GO 和 Gb-rGO 在人乳腺癌细胞中的生物相容性。

结果:通过 UV-vis 光谱和 FTIR 确认了石墨烯的成功合成。DLS 分析用于确定 GO 和 Gb-rGO 的平均粒径。X 射线衍射研究证实了石墨烯的结晶性质。SEM 用于研究 GO 和 Gb-rGO 的表面形貌。AFM 用于研究制备的石墨烯的形貌以及 GO 和 Gb-rGO 的高度轮廓。拉曼光谱证实了 Gb-rGO 中缺陷的形成。通过水溶性四唑 8 测定法在人乳腺癌细胞上研究了制备的 GO 和 Gb-rGO 的生物相容性。GO 表现出剂量依赖性毒性,而 Gb-rGO 处理的细胞表现出与 GO 相比显著的生物相容性和增加的 ALP 活性。

结论:在这项工作中,使用银杏叶提取物(GbE)作为无毒的天然还原剂来制备可溶性石墨烯。所制备的 Gb-rGO 与人癌细胞具有显著的生物相容性。这种简单、经济高效且环保的方法为 rGO 的大规模生产提供了一种替代途径,并可用于各种生物医学应用,如组织工程、药物输送、生物传感和分子成像。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e09/3890967/9f2e84adeb8f/ijn-9-363Fig11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e09/3890967/d972733523f4/ijn-9-363Fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e09/3890967/6b84fc239762/ijn-9-363Fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e09/3890967/f9297099901d/ijn-9-363Fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e09/3890967/69d887e53bc0/ijn-9-363Fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e09/3890967/92635b53b57e/ijn-9-363Fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e09/3890967/e0257152afd3/ijn-9-363Fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e09/3890967/dfd728cacd2c/ijn-9-363Fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e09/3890967/064fd8c1ca24/ijn-9-363Fig8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e09/3890967/3162e595c068/ijn-9-363Fig9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e09/3890967/d01113a8c94e/ijn-9-363Fig10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e09/3890967/9f2e84adeb8f/ijn-9-363Fig11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e09/3890967/d972733523f4/ijn-9-363Fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e09/3890967/6b84fc239762/ijn-9-363Fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e09/3890967/f9297099901d/ijn-9-363Fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e09/3890967/69d887e53bc0/ijn-9-363Fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e09/3890967/92635b53b57e/ijn-9-363Fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e09/3890967/e0257152afd3/ijn-9-363Fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e09/3890967/dfd728cacd2c/ijn-9-363Fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e09/3890967/064fd8c1ca24/ijn-9-363Fig8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e09/3890967/3162e595c068/ijn-9-363Fig9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e09/3890967/d01113a8c94e/ijn-9-363Fig10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e09/3890967/9f2e84adeb8f/ijn-9-363Fig11.jpg

相似文献

[1]
Ginkgo biloba: a natural reducing agent for the synthesis of cytocompatible graphene.

Int J Nanomedicine. 2014-1-7

[2]
An in vitro evaluation of graphene oxide reduced by Ganoderma spp. in human breast cancer cells (MDA-MB-231).

Int J Nanomedicine. 2014-4-8

[3]
Green chemistry approach for the synthesis of biocompatible graphene.

Int J Nanomedicine. 2013-7-31

[4]
A Novel Biomolecule-Mediated Reduction of Graphene Oxide: A Multifunctional Anti-Cancer Agent.

Molecules. 2016-3-18

[5]
Reduction of graphene oxide by resveratrol: a novel and simple biological method for the synthesis of an effective anticancer nanotherapeutic molecule.

Int J Nanomedicine. 2015-4-15

[6]
Green synthesis of graphene and its cytotoxic effects in human breast cancer cells.

Int J Nanomedicine. 2013-3-10

[7]
Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in Pseudomonas aeruginosa.

Int J Nanomedicine. 2012-11-30

[8]
SnO-Doped ZnO/Reduced Graphene Oxide Nanocomposites: Synthesis, Characterization, and Improved Anticancer Activity via Oxidative Stress Pathway.

Int J Nanomedicine. 2021

[9]
Biocompatibility effects of biologically synthesized graphene in primary mouse embryonic fibroblast cells.

Nanoscale Res Lett. 2013-9-23

[10]
Biocompatibility of microbially reduced graphene oxide in primary mouse embryonic fibroblast cells.

Colloids Surf B Biointerfaces. 2013-1-5

引用本文的文献

[1]
Bioinspired graphene-based metal oxide nanocomposites for photocatalytic and electrochemical performances: an updated review.

Nanoscale Adv. 2024-4-5

[2]
Chasing Graphene-Based Anticancer Drugs: Where are We Now on the Biomedical Graphene Roadmap?

Int J Nanomedicine. 2024

[3]
One-Pot Solvothermal Synthetic Route of a Zinc Oxide Nanoparticle-Decorated Reduced Graphene Oxide Nanocomposite: An Advanced Material with a Novel Anticancer Theranostic Approach.

ACS Omega. 2023-11-28

[4]
Identifying the Anti-MERS-CoV and Anti-HcoV-229E Potential Drugs from the Leaves Extract and Its Eco-Friendly Synthesis of Silver Nanoparticles.

Molecules. 2023-2-1

[5]
Efficient One-Pot Solvothermal Synthesis and Characterization of Zirconia Nanoparticle-Decorated Reduced Graphene Oxide Nanocomposites: Evaluation of Their Enhanced Anticancer Activity toward Human Cancer Cell Lines.

ACS Omega. 2023-1-3

[6]
Green Synthesis of Carbon Nanoparticles (CNPs) from Biomass for Biomedical Applications.

Int J Mol Sci. 2023-1-5

[7]
Graphene Oxide Enhances Biogenesis and Release of Exosomes in Human Ovarian Cancer Cells.

Int J Nanomedicine. 2022

[8]
Hydrothermal Synthesis of Silver Decorated Reduced Graphene Oxide (rGO) Nanoflakes with Effective Photocatalytic Activity for Wastewater Treatment.

Nanoscale Res Lett. 2020-4-28

[9]
Endophytes from and their secondary metabolites.

Chin Med. 2019-11-8

[10]
Differential Immunomodulatory Effect of Graphene Oxide and Vanillin-Functionalized Graphene Oxide Nanoparticles in Human Acute Monocytic Leukemia Cell Line (THP-1).

Int J Mol Sci. 2019-1-10

本文引用的文献

[1]
Synthesis of hydroxyapatite-reduced graphite oxide nanocomposites for biomedical applications: oriented nucleation and epitaxial growth of hydroxyapatite.

J Mater Chem B. 2013-4-7

[2]
In situ synthesis and biocompatibility of nano hydroxyapatite on pristine and chitosan functionalized graphene oxide.

J Mater Chem B. 2013-1-28

[3]
Humanin: a novel functional molecule for the green synthesis of graphene.

Colloids Surf B Biointerfaces. 2013-6-24

[4]
Internalization and cytotoxicity of graphene oxide and carboxyl graphene nanoplatelets in the human hepatocellular carcinoma cell line Hep G2.

Part Fibre Toxicol. 2013-7-12

[5]
An environmentally friendly approach to the reduction of graphene oxide by Escherichia fergusoni.

J Nanosci Nanotechnol. 2013-3

[6]
Green synthesis of graphene and its cytotoxic effects in human breast cancer cells.

Int J Nanomedicine. 2013-3-10

[7]
Cell response of nanographene platelets to human osteoblast-like MG63 cells.

J Biomed Mater Res A. 2014-3

[8]
Biocompatibility of microbially reduced graphene oxide in primary mouse embryonic fibroblast cells.

Colloids Surf B Biointerfaces. 2013-1-5

[9]
Deconstructing graphite: graphenide solutions.

Acc Chem Res. 2012-10-25

[10]
Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in Pseudomonas aeruginosa.

Int J Nanomedicine. 2012-11-30

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索