Fernandez-Lozano C, Canto C, Gestal M, Andrade-Garda J M, Rabuñal J R, Dorado J, Pazos A
Information and Communications Technologies Department, Faculty of Computer Science, University of A Coruña, Campus Elviña s/n, 15071, A Coruña, Spain.
Analytical Chemistry Department, Faculty of Sciences, University of A Coruña, Campus da Zapateira s/n, 15008, A Coruña, Spain.
ScientificWorldJournal. 2013 Dec 10;2013:982438. doi: 10.1155/2013/982438. eCollection 2013.
Given the background of the use of Neural Networks in problems of apple juice classification, this paper aim at implementing a newly developed method in the field of machine learning: the Support Vector Machines (SVM). Therefore, a hybrid model that combines genetic algorithms and support vector machines is suggested in such a way that, when using SVM as a fitness function of the Genetic Algorithm (GA), the most representative variables for a specific classification problem can be selected.
鉴于神经网络在苹果汁分类问题中的应用背景,本文旨在实现机器学习领域一种新开发的方法:支持向量机(SVM)。因此,提出了一种将遗传算法和支持向量机相结合的混合模型,其方式为,当将支持向量机用作遗传算法(GA)的适应度函数时,可以选择特定分类问题的最具代表性的变量。