Suppr超能文献

从药物证据库的开发中吸取的经验教训,以支持药物警戒。

Lessons learned from developing a drug evidence base to support pharmacovigilance.

机构信息

Department of Biomedical Informatics, Vanderbilt University School of Medicine , Nashville, Tennessee, USA.

Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; 4School of Nursing, Vanderbilt University , Nashville, Tennessee, USA.

出版信息

Appl Clin Inform. 2013 Dec 18;4(4):596-617. doi: 10.4338/ACI-2013-08-RA-0062. eCollection 2013.

Abstract

OBJECTIVE

This work identified challenges associated with extraction and representation of medication-related information from publicly available electronic sources.

METHODS

We gained direct observational experience through creating and evaluating the Drug Evidence Base (DEB), a repository of drug indications and adverse effects (ADEs), and supplemented this through literature review. We extracted DEB content from the National Drug File Reference Terminology, from aggregated MEDLINE co-occurrence data, and from the National Library of Medicine's DailyMed. To understand better the similarities, differences and problems with the content of DEB and the SIDER Side Effect Resource, and Vanderbilt's MEDI Indication Resource, we carried out statistical evaluations and human expert reviews.

RESULTS

While DEB, SIDER, and MEDI often agreed on medication indications and side effects, cross-system shortcomings limit their current utility. The drug information resources we evaluated frequently employed multiple, disparate vaguely related UMLS concepts to represent a single specific clinical drug indication or adverse effect. Thus, evaluations comparing drug-indication and drug-ADE coverage for such resources will encounter substantial numbers of false negative and false positive matches. Furthermore, our review found that many indication and ADE relationships are too complex - logically and temporally - to represent within existing systems.

CONCLUSION

To enhance applicability and utility, future drug information systems deriving indications and ADEs from public resources must represent clinical concepts uniformly and as precisely as possible. Future systems must also better represent the inherent complexity of indications and ADEs.

摘要

目的

本研究旨在确定从公开可用的电子资源中提取和表示药物相关信息所面临的挑战。

方法

我们通过创建和评估药物证据库(Drug Evidence Base,DEB)获得了直接的观察经验,该库是药物适应证和不良反应(Adverse Effect,AE)的存储库,并通过文献回顾对此进行了补充。我们从国家药物文件参考术语(National Drug File Reference Terminology)、汇总的 MEDLINE 共现数据以及美国国家医学图书馆的每日医学(DailyMed)中提取 DEB 内容。为了更好地理解 DEB 与 SIDER 副作用资源以及范德比尔特大学的 MEDI 适应证资源的内容的相似之处、差异和问题,我们进行了统计评估和人工专家审查。

结果

尽管 DEB、SIDER 和 MEDI 通常在药物适应证和副作用方面达成一致,但跨系统的局限性限制了它们的当前效用。我们评估的药物信息资源经常使用多个不同的、模糊相关的 UMLS 概念来表示单个特定的临床药物适应证或不良反应。因此,对于这些资源,评估药物适应证和药物 ADE 覆盖范围的比较将会遇到大量的假阴性和假阳性匹配。此外,我们的审查发现,许多适应证和 ADE 关系在逻辑和时间上过于复杂,无法在现有系统中表示。

结论

为了提高适用性和实用性,未来从公共资源中提取适应证和 ADE 的药物信息系统必须尽可能统一和精确地表示临床概念。未来的系统还必须更好地表示适应证和 ADE 的固有复杂性。

相似文献

1
Lessons learned from developing a drug evidence base to support pharmacovigilance.
Appl Clin Inform. 2013 Dec 18;4(4):596-617. doi: 10.4338/ACI-2013-08-RA-0062. eCollection 2013.
2
Leveraging MEDLINE indexing for pharmacovigilance - Inherent limitations and mitigation strategies.
J Biomed Inform. 2015 Oct;57:425-35. doi: 10.1016/j.jbi.2015.08.022. Epub 2015 Sep 2.
3
Development and evaluation of an ensemble resource linking medications to their indications.
J Am Med Inform Assoc. 2013 Sep-Oct;20(5):954-61. doi: 10.1136/amiajnl-2012-001431. Epub 2013 Apr 10.
4
Evaluation of Natural Language Processing (NLP) systems to annotate drug product labeling with MedDRA terminology.
J Biomed Inform. 2018 Jul;83:73-86. doi: 10.1016/j.jbi.2018.05.019. Epub 2018 Jun 1.
5
Augmenting aer2vec: Enriching distributed representations of adverse event report data with orthographic and lexical information.
J Biomed Inform. 2021 Jul;119:103833. doi: 10.1016/j.jbi.2021.103833. Epub 2021 Jun 8.
7
ADEpedia 2.0: Integration of Normalized Adverse Drug Events (ADEs) Knowledge from the UMLS.
AMIA Jt Summits Transl Sci Proc. 2013 Mar 18;2013:100-4. eCollection 2013.
10
Natural Language Processing for EHR-Based Pharmacovigilance: A Structured Review.
Drug Saf. 2017 Nov;40(11):1075-1089. doi: 10.1007/s40264-017-0558-6.

引用本文的文献

1
An updated, computable MEDication-Indication resource for biomedical research.
Sci Rep. 2021 Sep 23;11(1):18953. doi: 10.1038/s41598-021-98579-4.
2
Learning the impact of acute and chronic diseases on forecasting neonatal encephalopathy.
Comput Methods Programs Biomed. 2021 Nov;211:106397. doi: 10.1016/j.cmpb.2021.106397. Epub 2021 Sep 13.
3
Trans-ethnic association study of blood pressure determinants in over 750,000 individuals.
Nat Genet. 2019 Jan;51(1):51-62. doi: 10.1038/s41588-018-0303-9. Epub 2018 Dec 21.
4
Evaluation of a Novel System to Enhance Clinicians' Recognition of Preadmission Adverse Drug Reactions.
Appl Clin Inform. 2018 Apr;9(2):313-325. doi: 10.1055/s-0038-1646963. Epub 2018 May 9.
5
Text mining for adverse drug events: the promise, challenges, and state of the art.
Drug Saf. 2014 Oct;37(10):777-90. doi: 10.1007/s40264-014-0218-z.

本文引用的文献

1
Development and evaluation of an ensemble resource linking medications to their indications.
J Am Med Inform Assoc. 2013 Sep-Oct;20(5):954-61. doi: 10.1136/amiajnl-2012-001431. Epub 2013 Apr 10.
2
Pharmacovigilance using clinical notes.
Clin Pharmacol Ther. 2013 Jun;93(6):547-55. doi: 10.1038/clpt.2013.47. Epub 2013 Mar 4.
4
Design and validation of an automated method to detect known adverse drug reactions in MEDLINE: a contribution from the EU-ADR project.
J Am Med Inform Assoc. 2013 May 1;20(3):446-52. doi: 10.1136/amiajnl-2012-001083. Epub 2012 Nov 29.
5
Novel data-mining methodologies for adverse drug event discovery and analysis.
Clin Pharmacol Ther. 2012 Jun;91(6):1010-21. doi: 10.1038/clpt.2012.50.
6
Data-driven prediction of drug effects and interactions.
Sci Transl Med. 2012 Mar 14;4(125):125ra31. doi: 10.1126/scitranslmed.3003377.
7
A hybrid knowledge-based and data-driven approach to identifying semantically similar concepts.
J Biomed Inform. 2012 Jun;45(3):471-81. doi: 10.1016/j.jbi.2012.01.002. Epub 2012 Jan 25.
10
k-Neighborhood decentralization: a comprehensive solution to index the UMLS for large scale knowledge discovery.
J Biomed Inform. 2012 Apr;45(2):323-36. doi: 10.1016/j.jbi.2011.11.012. Epub 2011 Dec 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验