Suppr超能文献

细菌膜联蛋白的生物信息学分析——真核膜联蛋白的假定祖先亲属。

Bioinformatics analysis of bacterial annexins--putative ancestral relatives of eukaryotic annexins.

机构信息

Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.

Faculty of Agriculture and Biology, Warsaw University of Life Sciences, Warsaw, Poland.

出版信息

PLoS One. 2014 Jan 16;9(1):e85428. doi: 10.1371/journal.pone.0085428. eCollection 2014.

Abstract

Annexins are Ca(2+)-binding, membrane-interacting proteins, widespread among eukaryotes, consisting usually of four structurally similar repeated domains. It is accepted that vertebrate annexins derive from a double genome duplication event. It has been postulated that a single domain annexin, if found, might represent a molecule related to the hypothetical ancestral annexin. The recent discovery of a single-domain annexin in a bacterium, Cytophaga hutchinsonii, apparently confirmed this hypothesis. Here, we present a more complex picture. Using remote sequence similarity detection tools, a survey of bacterial genomes was performed in search of annexin-like proteins. In total, we identified about thirty annexin homologues, including single-domain and multi-domain annexins, in seventeen bacterial species. The thorough search yielded, besides the known annexin homologue from C. hutchinsonii, homologues from the Bacteroidetes/Chlorobi phylum, from Gemmatimonadetes, from beta- and delta-Proteobacteria, and from Actinobacteria. The sequences of bacterial annexins exhibited remote but statistically significant similarity to sequence profiles built of the eukaryotic ones. Some bacterial annexins are equipped with additional, different domains, for example those characteristic for toxins. The variation in bacterial annexin sequences, much wider than that observed in eukaryotes, and different domain architectures suggest that annexins found in bacteria may actually descend from an ancestral bacterial annexin, from which eukaryotic annexins also originate. The hypothesis of an ancient origin of bacterial annexins has to be reconciled with the fact that remarkably few bacterial strains possess annexin genes compared to the thousands of known bacterial genomes and with the patchy, anomalous phylogenetic distribution of bacterial annexins. Thus, a massive annexin gene loss in several bacterial lineages or very divergent evolution would appear a likely explanation. Alternative evolutionary scenarios, involving horizontal gene transfer between bacteria and protozoan eukaryotes, in either direction, appear much less likely. Altogether, current evidence does not allow unequivocal judgement as to the origin of bacterial annexins.

摘要

钙黏蛋白是一种与 Ca(2+) 结合的膜结合蛋白,在真核生物中广泛存在,通常由四个结构相似的重复结构域组成。人们普遍认为脊椎动物钙黏蛋白源自双重基因组复制事件。有人假设,如果发现单个结构域钙黏蛋白,它可能代表与假设的原始钙黏蛋白相关的分子。最近在一种名为 Cytophaga hutchinsonii 的细菌中发现了一种单结构域钙黏蛋白,这显然证实了这一假说。然而,这里我们呈现出一个更为复杂的情况。我们使用远程序列相似性检测工具,对细菌基因组进行了调查,以寻找钙黏蛋白样蛋白。总共在 17 种细菌物种中鉴定出约 30 种钙黏蛋白同源物,包括单结构域和多结构域钙黏蛋白。彻底的搜索除了在 Cytophaga hutchinsonii 中发现已知的钙黏蛋白同源物外,还在拟杆菌门/绿菌门、芽单胞菌门、β-和 δ-变形菌门以及放线菌门中发现了同源物。细菌钙黏蛋白的序列与基于真核生物构建的序列图谱具有远程但具有统计学意义的相似性。一些细菌钙黏蛋白具有额外的不同结构域,例如那些特征性的毒素结构域。细菌钙黏蛋白序列的变化比真核生物中的变化更为广泛,并且结构域结构不同,这表明在细菌中发现的钙黏蛋白实际上可能源自原始细菌钙黏蛋白,而真核钙黏蛋白也是由此衍生而来的。细菌钙黏蛋白起源于古老的假说必须与以下事实相协调:与已知的数千种细菌基因组相比,具有钙黏蛋白基因的细菌菌株数量显著较少,并且细菌钙黏蛋白的系统发育分布也异常分散。因此,在几个细菌谱系中发生大量钙黏蛋白基因丢失或非常不同的进化似乎是一个可能的解释。涉及细菌和原生动物真核生物之间的水平基因转移的替代进化情景,无论方向如何,似乎不太可能。总之,目前的证据尚不能明确判断细菌钙黏蛋白的起源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f14c/3894181/2b11c8ee945f/pone.0085428.g001.jpg

相似文献

1
Bioinformatics analysis of bacterial annexins--putative ancestral relatives of eukaryotic annexins.
PLoS One. 2014 Jan 16;9(1):e85428. doi: 10.1371/journal.pone.0085428. eCollection 2014.
2
Molecular phylogeny of annexins and identification of a primitive homologue in Giardia lamblia.
Mol Biol Evol. 1995 Nov;12(6):967-79. doi: 10.1093/oxfordjournals.molbev.a040290.
5
Comparative genetics and evolution of annexin A13 as the founder gene of vertebrate annexins.
Mol Biol Evol. 2002 May;19(5):608-18. doi: 10.1093/oxfordjournals.molbev.a004120.
8
Pepsin homologues in bacteria.
BMC Genomics. 2009 Sep 16;10:437. doi: 10.1186/1471-2164-10-437.
9
Identification of a novel class of annexin genes.
FEBS Lett. 2004 Mar 26;562(1-3):79-86. doi: 10.1016/S0014-5793(04)00186-3.
10
Deciphering function and mechanism of calcium-binding proteins from their evolutionary imprints.
Biochim Biophys Acta. 2006 Nov;1763(11):1238-49. doi: 10.1016/j.bbamcr.2006.09.028. Epub 2006 Sep 26.

引用本文的文献

1
Annexin-Membrane Interactions Across Eukaryotic Domains of Life-A Comparative Approach.
Int J Mol Sci. 2025 Jul 7;26(13):6517. doi: 10.3390/ijms26136517.
3
Expression of bovine annexin A4 in rescues cytokinesis blocked by beta-lactam antibiotics.
Biochem Biophys Rep. 2023 Oct 8;36:101553. doi: 10.1016/j.bbrep.2023.101553. eCollection 2023 Dec.
4
The enigmatic role of fungal annexins: the case of Cryptococcus neoformans.
Microbiology (Reading). 2019 Aug;165(8):852-862. doi: 10.1099/mic.0.000815. Epub 2019 May 29.
5
Comparative Cell Biology and Evolution of Annexins in Diplomonads.
mSphere. 2016 Mar 23;1(2). doi: 10.1128/mSphere.00032-15. eCollection 2016 Mar-Apr.
6
Fungal annexins: a mini review.
Springerplus. 2015 Nov 24;4(1):721. doi: 10.1186/s40064-015-1519-0. eCollection 2015.

本文引用的文献

1
A genome-wide analysis of annexins from parasitic organisms and their vectors.
Sci Rep. 2013 Oct 11;3:2893. doi: 10.1038/srep02893.
3
Lateral gene transfer of family A DNA polymerases between thermophilic viruses, aquificae, and apicomplexa.
Mol Biol Evol. 2013 Jul;30(7):1653-64. doi: 10.1093/molbev/mst078. Epub 2013 Apr 22.
4
GenBank.
Nucleic Acids Res. 2013 Jan;41(Database issue):D36-42. doi: 10.1093/nar/gks1195. Epub 2012 Nov 27.
5
Evolutionary adaptation of plant annexins has diversified their molecular structures, interactions and functional roles.
New Phytol. 2012 Nov;196(3):695-712. doi: 10.1111/j.1469-8137.2012.04308.x. Epub 2012 Sep 19.
6
Environmental factors influencing gene transfer agent (GTA) mediated transduction in the subtropical ocean.
PLoS One. 2012;7(8):e43506. doi: 10.1371/journal.pone.0043506. Epub 2012 Aug 15.
7
Genome sequence of the filamentous bacterium Fibrisoma limi BUZ 3T.
J Bacteriol. 2012 Aug;194(16):4445. doi: 10.1128/JB.00869-12.
8
Genome sequence of the marine bacterium Marinilabilia salmonicolor JCM 21150T.
J Bacteriol. 2012 Jul;194(14):3746. doi: 10.1128/JB.00649-12.
10
Do annexins participate in lipid messenger mediated intracellular signaling? A question revisited.
Mol Membr Biol. 2012 Nov;29(7):229-42. doi: 10.3109/09687688.2012.693210. Epub 2012 Jun 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验