Center for Radiological Research, Columbia University, New York, New York, United States of America.
Department of Radiology, Albert Einstein College of Medicine, Bronx, New York, United States of America.
PLoS One. 2014 Jan 15;9(1):e85561. doi: 10.1371/journal.pone.0085561. eCollection 2014.
Ionizing radiation is known for its cytotoxic and mutagenic properties. However, recent evidence suggests that chronic sub-lethal irradiation stimulates the growth of melanin-pigmented (melanized) fungi, supporting the hypothesis that interactions between melanin and ionizing photons generate energy useful for fungal growth, and/or regulate growth-promoting genes. There are no quantitative models of how fungal proliferation is affected by ionizing photon energy, dose rate, and presence versus absence of melanin on the same genetic background. Here we present such a model, which we test using experimental data on melanin-modulated radiation-induced proliferation enhancement in the fungus Cryptococcus neoformans, exposed to two different peak energies (150 and 320 kVp) over a wide range of X-ray dose rates. Our analysis demonstrates that radiation-induced proliferation enhancement in C. neoformans behaves as a binary "on/off" phenomenon, which is triggered by dose rates <0.002 mGy/h, and stays in the "on" position. A competing dose rate-dependent growth inhibition becomes apparent at dose rates >5000 mGy/h. Proliferation enhancement of irradiated cells compared with unirradiated controls occurs at both X-ray peak energies, but its magnitude is modulated by X-ray peak energy and cell melanization. At dose rates <5000 mGy/h, both melanized and non-melanized cells exposed to 150 kVp X-rays, and non-melanized cells exposed to 320 kVp X-rays, all exhibit the same proliferation enhancement: on average, chronic irradiation stimulates each founder cell to produce 100 (95% CI: 83, 116) extra descendants over 48 hours. Interactions between melanin and 320 kVp X-rays result in a significant (2-tailed p-value = 4.8 × 10(-5)) additional increase in the number of radiation-induced descendants per founder cell: by 55 (95% CI: 29, 81). These results show that both melanin-dependent and melanin-independent mechanisms are involved in radiation-induced fungal growth enhancement, and implicate direct and/or indirect interactions of melanin with high energy ionizing photons as an important pro-proliferative factor.
电离辐射以其细胞毒性和致突变性而闻名。然而,最近的证据表明,慢性亚致死辐照刺激黑色素沉着(黑化)真菌的生长,支持这样一种假说,即黑色素与电离光子的相互作用产生对真菌生长有用的能量,和/或调节促进生长的基因。关于真菌增殖如何受到电离光子能量、剂量率以及相同遗传背景下黑色素的存在与否的影响,目前还没有定量模型。在这里,我们提出了这样一个模型,并使用实验数据对新型隐球菌中黑色素调节的辐射诱导增殖增强进行了测试,该真菌暴露于两种不同的峰值能量(150 和 320 kVp)和广泛的 X 射线剂量率范围内。我们的分析表明,新型隐球菌中的辐射诱导增殖增强表现为一种二元“开/关”现象,当剂量率<0.002 mGy/h 时触发,并保持在“开”位置。在剂量率>5000 mGy/h 时,会出现明显的竞争剂量率依赖性生长抑制。与未辐照对照相比,辐照细胞的增殖增强发生在两种 X 射线峰值能量下,但受 X 射线峰值能量和细胞黑色素沉着的调节。在剂量率<5000 mGy/h 时,暴露于 150 kVp X 射线的黑色素沉着和非黑色素沉着细胞,以及暴露于 320 kVp X 射线的非黑色素沉着细胞,都表现出相同的增殖增强:平均而言,慢性辐照刺激每个起始细胞在 48 小时内产生 100(95%置信区间:83,116)个额外的后代。黑色素与 320 kVp X 射线之间的相互作用导致每个起始细胞中辐射诱导的后代数量显著增加(双侧 2 尾 p 值=4.8×10(-5)):增加 55(95%置信区间:29,81)。这些结果表明,黑色素依赖性和黑色素非依赖性机制都参与了辐射诱导的真菌生长增强,并暗示黑色素与高能电离光子的直接和/或间接相互作用是一个重要的促增殖因素。