Suppr超能文献

利用I-E型CRISPR-Cas系统对噬菌体基因组进行高效工程改造。

Efficient engineering of a bacteriophage genome using the type I-E CRISPR-Cas system.

作者信息

Kiro Ruth, Shitrit Dror, Qimron Udi

机构信息

Department of Clinical Microbiology and Immunology; Sackler School of Medicine; Tel Aviv University; Tel Aviv, Israel.

出版信息

RNA Biol. 2014;11(1):42-4. doi: 10.4161/rna.27766. Epub 2014 Jan 22.

Abstract

The clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated (Cas) system has recently been used to engineer genomes of various organisms, but surprisingly, not those of bacteriophages (phages). Here we present a method to genetically engineer the Escherichia coli phage T7 using the type I-E CRISPR-Cas system. T7 phage genome is edited by homologous recombination with a DNA sequence flanked by sequences homologous to the desired location. Non-edited genomes are targeted by the CRISPR-Cas system, thus enabling isolation of the desired recombinant phages. This method broadens CRISPR Cas-based editing to phages and uses a CRISPR-Cas type other than type II. The method may be adjusted to genetically engineer any bacteriophage genome.

摘要

成簇规律间隔短回文重复序列(CRISPR)-CRISPR相关蛋白(Cas)系统最近已被用于改造各种生物体的基因组,但令人惊讶的是,尚未用于噬菌体基因组的改造。在此,我们展示了一种使用I-E型CRISPR-Cas系统对大肠杆菌噬菌体T7进行基因工程改造的方法。T7噬菌体基因组通过与一段DNA序列进行同源重组来编辑,该DNA序列两侧是与期望位置同源的序列。未编辑的基因组会被CRISPR-Cas系统靶向,从而能够分离出所需的重组噬菌体。该方法将基于CRISPR-Cas的编辑扩展到了噬菌体,并使用了II型以外的CRISPR-Cas类型。该方法可进行调整,以对任何噬菌体基因组进行基因工程改造。

相似文献

1
Efficient engineering of a bacteriophage genome using the type I-E CRISPR-Cas system.
RNA Biol. 2014;11(1):42-4. doi: 10.4161/rna.27766. Epub 2014 Jan 22.
2
Comparison of CRISPR and Marker-Based Methods for the Engineering of Phage T7.
Viruses. 2020 Feb 10;12(2):193. doi: 10.3390/v12020193.
3
Repurposing an Endogenous CRISPR-Cas System to Generate and Study Subtle Mutations in Bacteriophages.
CRISPR J. 2024 Dec;7(6):343-354. doi: 10.1089/crispr.2024.0047. Epub 2024 Sep 30.
4
CRISPR-Cas: an efficient tool for genome engineering of virulent bacteriophages.
Nucleic Acids Res. 2014 Aug;42(14):9504-13. doi: 10.1093/nar/gku628. Epub 2014 Jul 24.
5
Bacteriophage T4 Escapes CRISPR Attack by Minihomology Recombination and Repair.
mBio. 2021 Jun 29;12(3):e0136121. doi: 10.1128/mBio.01361-21. Epub 2021 Jun 22.
6
[CRISPR/Cas systems in genome engineering of bacteriophages].
Yi Chuan. 2018 May 20;40(5):378-389. doi: 10.16288/j.yczz.17-419.
8
Efficient Genome Engineering of a Virulent Klebsiella Bacteriophage Using CRISPR-Cas9.
J Virol. 2018 Aug 16;92(17). doi: 10.1128/JVI.00534-18. Print 2018 Sep 1.
9
Selection of Genetically Modified Bacteriophages Using the CRISPR-Cas System.
Bio Protoc. 2017 Aug 5;7(15). doi: 10.21769/BioProtoc.2431.

引用本文的文献

1
Bacteriophages as Agents for Plant Disease Control: Where Are We After a Century?
Viruses. 2025 Jul 23;17(8):1033. doi: 10.3390/v17081033.
2
Armed Phages: A New Weapon in the Battle Against Antimicrobial Resistance.
Viruses. 2025 Jun 27;17(7):911. doi: 10.3390/v17070911.
3
CRISPR-Cas10-Assisted Structural Modification of Staphylococcal for Imaging and Biosensing Applications.
ACS Synth Biol. 2025 Aug 15;14(8):2979-2986. doi: 10.1021/acssynbio.5c00387. Epub 2025 Jul 28.
4
Precision targeting of genetic variations in mixed bacterial cultures using CRISPR-Cas12a-programmed λ phages.
Front Microbiol. 2025 Jun 2;16:1575339. doi: 10.3389/fmicb.2025.1575339. eCollection 2025.
5
Programming virulent bacteriophages by developing a multiplex genome engineering method.
mBio. 2025 Jun 11;16(6):e0358224. doi: 10.1128/mbio.03582-24. Epub 2025 May 23.
6
Phage therapy for Klebsiella pneumoniae: Understanding bacteria-phage interactions for therapeutic innovations.
PLoS Pathog. 2025 Apr 8;21(4):e1012971. doi: 10.1371/journal.ppat.1012971. eCollection 2025 Apr.
7
Engineering bacteriophages for targeted superbug eradication.
Mol Biol Rep. 2025 Feb 11;52(1):221. doi: 10.1007/s11033-025-10332-6.
8
Harnessing the Streptomyces-originating type I-E CRISPR/Cas system for efficient genome editing in Streptomyces.
Sci China Life Sci. 2025 Apr;68(4):1174-1182. doi: 10.1007/s11427-024-2677-4. Epub 2025 Jan 14.
9
Genetic manipulation of bacteriophage T4 utilizing the CRISPR-Cas13b system.
Front Genome Ed. 2024 Dec 19;6:1495968. doi: 10.3389/fgeed.2024.1495968. eCollection 2024.
10
Research Progress on the Mechanism and Application of the Type I CRISPR-Cas System.
Int J Mol Sci. 2024 Nov 22;25(23):12544. doi: 10.3390/ijms252312544.

本文引用的文献

1
Efficient genome editing in plants using a CRISPR/Cas system.
Cell Res. 2013 Oct;23(10):1229-32. doi: 10.1038/cr.2013.114. Epub 2013 Aug 20.
3
Targeted genome modification of crop plants using a CRISPR-Cas system.
Nat Biotechnol. 2013 Aug;31(8):686-8. doi: 10.1038/nbt.2650.
4
Heritable gene targeting in the mouse and rat using a CRISPR-Cas system.
Nat Biotechnol. 2013 Aug;31(8):681-3. doi: 10.1038/nbt.2661.
5
Heritable genome editing in C. elegans via a CRISPR-Cas9 system.
Nat Methods. 2013 Aug;10(8):741-3. doi: 10.1038/nmeth.2532. Epub 2013 Jun 30.
6
Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease.
Genetics. 2013 Aug;194(4):1029-35. doi: 10.1534/genetics.113.152710. Epub 2013 May 24.
7
One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering.
Cell. 2013 May 9;153(4):910-8. doi: 10.1016/j.cell.2013.04.025. Epub 2013 May 2.
8
Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems.
Nucleic Acids Res. 2013 Apr;41(7):4336-43. doi: 10.1093/nar/gkt135. Epub 2013 Mar 4.
9
RNA-guided editing of bacterial genomes using CRISPR-Cas systems.
Nat Biotechnol. 2013 Mar;31(3):233-9. doi: 10.1038/nbt.2508. Epub 2013 Jan 29.
10
Efficient genome editing in zebrafish using a CRISPR-Cas system.
Nat Biotechnol. 2013 Mar;31(3):227-9. doi: 10.1038/nbt.2501. Epub 2013 Jan 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验