Howard Hughes Medical Institute, University of California, Berkeley, California 94720.
Genetics. 2013 Oct;195(2):331-48. doi: 10.1534/genetics.113.155382. Epub 2013 Aug 9.
Exploitation of custom-designed nucleases to induce DNA double-strand breaks (DSBs) at genomic locations of choice has transformed our ability to edit genomes, regardless of their complexity. DSBs can trigger either error-prone repair pathways that induce random mutations at the break sites or precise homology-directed repair pathways that generate specific insertions or deletions guided by exogenously supplied DNA. Prior editing strategies using site-specific nucleases to modify the Caenorhabditis elegans genome achieved only the heritable disruption of endogenous loci through random mutagenesis by error-prone repair. Here we report highly effective strategies using TALE nucleases and RNA-guided CRISPR/Cas9 nucleases to induce error-prone repair and homology-directed repair to create heritable, precise insertion, deletion, or substitution of specific DNA sequences at targeted endogenous loci. Our robust strategies are effective across nematode species diverged by 300 million years, including necromenic nematodes (Pristionchus pacificus), male/female species (Caenorhabditis species 9), and hermaphroditic species (C. elegans). Thus, genome-editing tools now exist to transform nonmodel nematode species into genetically tractable model organisms. We demonstrate the utility of our broadly applicable genome-editing strategies by creating reagents generally useful to the nematode community and reagents specifically designed to explore the mechanism and evolution of X chromosome dosage compensation. By developing an efficient pipeline involving germline injection of nuclease mRNAs and single-stranded DNA templates, we engineered precise, heritable nucleotide changes both close to and far from DSBs to gain or lose genetic function, to tag proteins made from endogenous genes, and to excise entire loci through targeted FLP-FRT recombination.
利用定制的核酸内切酶在基因组的目标位置诱导双链 DNA 断裂 (DSB),改变了我们编辑基因组的能力,无论基因组的复杂性如何。DSB 可以触发易错修复途径,在断裂部位诱导随机突变,也可以触发精确的同源定向修复途径,在供体外源 DNA 的指导下产生特定的插入或缺失。先前使用定点核酸内切酶修饰秀丽隐杆线虫基因组的编辑策略,只能通过易错修复随机突变实现内源基因座的可遗传破坏。在这里,我们报告了使用 TALE 核酸内切酶和 RNA 引导的 CRISPR/Cas9 核酸内切酶的高效策略,以诱导易错修复和同源定向修复,在靶向的内源基因座上产生特定 DNA 序列的可遗传、精确的插入、缺失或替换。我们的稳健策略在 3 亿年分化的线虫物种中都有效,包括 Necromenic 线虫 (Pristionchus pacificus)、雌雄同体物种 (Caenorhabditis species 9) 和雌雄同体物种 (C. elegans)。因此,现在已经有基因组编辑工具可以将非模式线虫物种转化为具有遗传可操作性的模式生物。我们通过创建对线虫社区普遍有用的试剂和专门设计的试剂来探索 X 染色体剂量补偿的机制和进化,证明了我们广泛适用的基因组编辑策略的实用性。通过开发涉及生殖系注射核酸内切酶 mRNA 和单链 DNA 模板的高效流水线,我们在 DSB 附近和远处设计了精确的、可遗传的核苷酸变化,以获得或失去遗传功能,标记由内源性基因产生的蛋白质,并通过靶向 FLP-FRT 重组切除整个基因座。