Suppr超能文献

通过分子动力学模拟和自由能计算探索马尔堡病毒 VP35 识别和结合 dsRNA 的机制。

Exploring the mechanism how Marburg virus VP35 recognizes and binds dsRNA by molecular dynamics simulations and free energy calculations.

机构信息

State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun, 130023, China.

出版信息

Biopolymers. 2014 Aug;101(8):849-60. doi: 10.1002/bip.22463.

Abstract

Filoviruses often cause terrible infectious disease which has not been successfully dealt with pharmacologically. All filoviruses encode a unique protein termed VP35 which can mask doubled-stranded RNA to deactivate interferon. The interface of VP35-dsRNA would be a feasible target for structure-based antiviral agent design. To explore the essence of VP35-dsRNA interaction, molecular dynamics simulation combined with MM-GBSA calculations were performed on Marburg virus VP35-dsRNA complex and several mutational complexes. The energetic analysis indicates that nonpolar interactions provide the main driving force for the binding process. Although the intermolecular electrostatic interactions play important roles in VP35-dsRNA interaction, the whole polar interactions are unfavorable for binding which result in a low binding affinity. Compared with wild type VP35, the studied mutants F228A, R271A, and K298A have obviously reduced binding free energies with dsRNA reflecting in the reduction of polar or nonpolar interactions. The results also indicate that the loss of binding affinity for one dsRNA strand would abolish the total binding affinity. Three important residues Arg271, Arg294, and Lys298 which makes the largest contribution for binding in VP35 lose their binding affinity significantly in mutants. The uncovering of VP35-dsRNA recognition mechanism will provide some insights for development of antiviral drug.

摘要

丝状病毒通常会引起可怕的传染病,目前在药理学上还没有成功地加以处理。所有丝状病毒都编码一种独特的蛋白质,称为 VP35,它可以掩盖双链 RNA 以使其失活干扰素。VP35-dsRNA 的界面将是基于结构的抗病毒药物设计的一个可行靶标。为了探索 VP35-dsRNA 相互作用的本质,对马尔堡病毒 VP35-dsRNA 复合物和几个突变复合物进行了分子动力学模拟和 MM-GBSA 计算。能量分析表明,非极性相互作用是结合过程的主要驱动力。尽管分子间静电相互作用在 VP35-dsRNA 相互作用中起着重要作用,但整个极性相互作用不利于结合,导致结合亲和力低。与野生型 VP35 相比,研究的突变体 F228A、R271A 和 K298A 与 dsRNA 的结合自由能明显降低,反映出极性或非极性相互作用的减少。结果还表明,一条 dsRNA 链结合亲和力的丧失会使总结合亲和力丧失。在 VP35 中对结合有最大贡献的三个重要残基 Arg271、Arg294 和 Lys298 在突变体中显著失去了结合亲和力。揭示 VP35-dsRNA 识别机制将为开发抗病毒药物提供一些见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验