Suppr超能文献

VP35 IID相互作用与识别双链RNA的微观机制探索:分子动力学模拟

Exploration micromechanism of VP35 IID interaction and recognition dsRNA: A molecular dynamics simulation.

作者信息

Zhang Yan-Jun, Ding Jing-Na, Zhong Hui, Han Ju-Guang

机构信息

National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, People's Republic of China.

出版信息

Proteins. 2017 Jun;85(6):1008-1023. doi: 10.1002/prot.25269. Epub 2017 Mar 7.

Abstract

Multifunctional viral protein (VP35) encoded by the highly pathogenic Ebola viruses (EBOVs) can antagonize host double-stranded RNA (dsRNA) sensors and immune response because of the simultaneous recognition of dsRNA backbone and blunt ends. Mutation of select hydrophobic conserved basic residues within the VP35 inhibitory domain (IID) abrogates its dsRNA-binding activity, and impairs VP35-mediated interferon (IFN) antagonism. Herein the detailed binding mechanism between dsRNA and WT, single mutant, and double mutant were investigated by all-atom molecular dynamics (MD) simulation and binding energy calculation. R312A/R322A double mutations results in a completely different binding site and orientation upon the structure analyses. The calculated binding free energy results reveal that R312A, R322A, and K339A single mutations decrease the binding free energies by 17.82, 13.18, and 13.68 kcal mol , respectively. The binding energy decomposition indicates that the strong binding affinity of the key residues is mainly due to the contributions of electrostatic interactions in the gas phase, where come from the positively charged side chain and the negatively charged dsRNA backbone. R312A, R322A, and K339A single mutations have no significant effect on VP35 IID conformation, but the mutations influence the contributions of electrostatic interactions in the gas phase. The calculated results reveal that end-cap residues which mainly contribute VDW interactions can recognize and capture dsRNA blunt ends, and the central basic residues (R312, R322, and K339) which mainly contribute favorable electrostatic interactions with dsRNA backbone can fix dsRNA binding site and orientation. Proteins 2017; 85:1008-1023. © 2017 Wiley Periodicals, Inc.

摘要

高致病性埃博拉病毒(EBOV)编码的多功能病毒蛋白(VP35)可同时识别双链RNA(dsRNA)的骨架和平端,从而拮抗宿主双链RNA传感器和免疫反应。VP35抑制结构域(IID)内特定疏水保守碱性残基的突变会消除其dsRNA结合活性,并损害VP35介导的干扰素(IFN)拮抗作用。本文通过全原子分子动力学(MD)模拟和结合能计算研究了dsRNA与野生型、单突变体和双突变体之间的详细结合机制。结构分析表明,R312A/R322A双突变导致完全不同的结合位点和方向。计算得到的结合自由能结果显示,R312A、R322A和K339A单突变分别使结合自由能降低了17.82、13.18和13.68 kcal/mol。结合能分解表明,关键残基的强结合亲和力主要源于气相中静电相互作用的贡献,其来自带正电的侧链和带负电的dsRNA骨架。R312A、R322A和K339A单突变对VP35 IID构象没有显著影响,但这些突变影响了气相中静电相互作用的贡献。计算结果表明,主要贡献范德华相互作用的端帽残基可识别并捕获dsRNA平端,而主要与dsRNA骨架产生有利静电相互作用的中心碱性残基(R312、R322和K339)可固定dsRNA的结合位点和方向。《蛋白质》2017年;85:1008 - 1023。©2017威利期刊公司

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验