Division of Nephrology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205.
Departments of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205.
J Biol Chem. 2014 Mar 7;289(10):6404-6414. doi: 10.1074/jbc.M113.501205. Epub 2014 Jan 23.
Mutations of the PKD1 and PKD2 genes, encoding polycystin-1 (PC1) and polycystin-2 (PC2), respectively, lead to autosomal dominant polycystic kidney disease. Interestingly, up-regulation or down-regulation of PKD1 or PKD2 leads to polycystic kidney disease in animal models, but their interrelations are not completely understood. We show here that full-length PC1 that interacts with PC2 via a C-terminal coiled-coil domain regulates PC2 expression in vivo and in vitro by down-regulating PC2 expression in a dose-dependent manner. Expression of the pathogenic mutant R4227X, which lacks the C-terminal coiled-coil domain, failed to down-regulate PC2 expression, suggesting that PC1-PC2 interaction is necessary for PC2 regulation. The proteasome and autophagy are two pathways that control protein degradation. Proteins that are not degraded by proteasomes precipitate in the cytoplasm and are transported via histone deacetylase 6 (HDAC6) toward the aggresomes. We found that HDAC6 binds to PC2 and that expression of full-length PC1 accelerates the transport of the HDAC6-PC2 complex toward aggresomes, whereas expression of the R4227X mutant fails to do so. Aggresomes are engulfed by autophagosomes, which then fuse with the lysosome for degradation; this process is also known as autophagy. We have now shown that PC1 overexpression leads to increased degradation of PC2 via autophagy. Interestingly, PC1 does not activate autophagy generally. Thus, we have now uncovered a new pathway suggesting that when PC1 is expressed, PC2 that is not bound to PC1 is directed to aggresomes and subsequently degraded via autophagy, a control mechanism that may play a role in autosomal dominant polycystic kidney disease pathogenesis.
PKD1 和 PKD2 基因突变分别导致多晶蛋白-1(PC1)和多晶蛋白-2(PC2)的编码,导致常染色体显性多囊肾病。有趣的是,PKD1 或 PKD2 的上调或下调会导致动物模型中的多囊肾病,但它们之间的关系尚不完全清楚。我们在这里表明,与 PC2 通过 C 端卷曲螺旋结构域相互作用的全长 PC1 在体内和体外通过以剂量依赖的方式下调 PC2 的表达来调节 PC2 的表达。表达缺乏 C 端卷曲螺旋结构域的致病突变体 R4227X 未能下调 PC2 的表达,表明 PC1-PC2 相互作用对于 PC2 调节是必需的。蛋白酶体和自噬是控制蛋白质降解的两种途径。未被蛋白酶体降解的蛋白质在细胞质中沉淀,并通过组蛋白去乙酰化酶 6(HDAC6)被运送到聚集物中。我们发现 HDAC6 与 PC2 结合,全长 PC1 的表达加速了 HDAC6-PC2 复合物向聚集物的运输,而 R4227X 突变体的表达则不能。聚集物被自噬体吞噬,然后与溶酶体融合进行降解;这个过程也被称为自噬。我们现在已经表明,PC1 的过表达通过自噬导致 PC2 的降解增加。有趣的是,PC1 一般不会激活自噬。因此,我们现在发现了一条新的途径,表明当 PC1 表达时,未与 PC1 结合的 PC2 被导向聚集物,随后通过自噬降解,这一控制机制可能在常染色体显性多囊肾病的发病机制中起作用。