Riedinger N, Formolo M J, Lyons T W, Henkel S, Beck A, Kasten S
Department of Earth Sciences, University of California, Riverside, CA, USA.
Geobiology. 2014 Mar;12(2):172-81. doi: 10.1111/gbi.12077. Epub 2014 Jan 27.
Here, we present results from sediments collected in the Argentine Basin, a non-steady state depositional marine system characterized by abundant oxidized iron within methane-rich layers due to sediment reworking followed by rapid deposition. Our comprehensive inorganic data set shows that iron reduction in these sulfate and sulfide-depleted sediments is best explained by a microbially mediated process-implicating anaerobic oxidation of methane coupled to iron reduction (Fe-AOM) as the most likely major mechanism. Although important in many modern marine environments, iron-driven AOM may not consume similar amounts of methane compared with sulfate-dependent AOM. Nevertheless, it may have broad impact on the deep biosphere and dominate both iron and methane cycling in sulfate-lean marine settings. Fe-AOM might have been particularly relevant in the Archean ocean, >2.5 billion years ago, known for its production and accumulation of iron oxides (in iron formations) in a biosphere likely replete with methane but low in sulfate. Methane at that time was a critical greenhouse gas capable of sustaining a habitable climate under relatively low solar luminosity, and relationships to iron cycling may have impacted if not dominated methane loss from the biosphere.
在此,我们展示了在阿根廷盆地采集的沉积物的研究结果,该盆地是一个非稳态沉积海洋系统,其特征是由于沉积物再加工后快速沉积,在富含甲烷的层中存在大量氧化态铁。我们全面的无机数据集表明,这些硫酸盐和硫化物含量低的沉积物中的铁还原作用,最合理的解释是微生物介导的过程——这意味着甲烷厌氧氧化与铁还原作用(铁介导的甲烷厌氧氧化,Fe-AOM)是最可能的主要机制。尽管铁驱动的甲烷厌氧氧化在许多现代海洋环境中都很重要,但与依赖硫酸盐的甲烷厌氧氧化相比,它消耗的甲烷量可能不同。然而,它可能对深部生物圈有广泛影响,并在贫硫酸盐海洋环境中主导铁和甲烷的循环。在25亿多年前的太古宙海洋中,铁介导的甲烷厌氧氧化可能尤为重要,当时的海洋以在可能富含甲烷但硫酸盐含量低的生物圈中产生和积累铁氧化物(在铁建造中)而闻名。当时,甲烷是一种关键的温室气体,能够在相对较低的太阳光度下维持适宜居住的气候,与铁循环的关系即使没有主导,也可能影响了甲烷从生物圈中的损失。