Suppr超能文献

甲烷海洋沉积物中由铁驱动的甲烷厌氧氧化的速率及微生物参与者

Rates and Microbial Players of Iron-Driven Anaerobic Oxidation of Methane in Methanic Marine Sediments.

作者信息

Aromokeye David A, Kulkarni Ajinkya C, Elvert Marcus, Wegener Gunter, Henkel Susann, Coffinet Sarah, Eickhorst Thilo, Oni Oluwatobi E, Richter-Heitmann Tim, Schnakenberg Annika, Taubner Heidi, Wunder Lea, Yin Xiuran, Zhu Qingzeng, Hinrichs Kai-Uwe, Kasten Sabine, Friedrich Michael W

机构信息

Microbial Ecophysiology Group, Faculty of Biology/Chemistry, University of Bremen, Bremen, Germany.

MARUM - Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany.

出版信息

Front Microbiol. 2020 Jan 17;10:3041. doi: 10.3389/fmicb.2019.03041. eCollection 2019.

Abstract

The flux of methane, a potent greenhouse gas, from the seabed is largely controlled by anaerobic oxidation of methane (AOM) coupled to sulfate reduction (S-AOM) in the sulfate methane transition (SMT). S-AOM is estimated to oxidize 90% of the methane produced in marine sediments and is mediated by a consortium of anaerobic methanotrophic archaea (ANME) and sulfate reducing bacteria. An additional methane sink, i.e., iron oxide coupled AOM (Fe-AOM), has been suggested to be active in the methanic zone of marine sediments. Geochemical signatures below the SMT such as high dissolved iron, low to undetectable sulfate and high methane concentrations, together with the presence of iron oxides are taken as prerequisites for this process. So far, Fe-AOM has neither been proven in marine sediments nor have the governing key microorganisms been identified. Here, using a multidisciplinary approach, we show that Fe-AOM occurs in iron oxide-rich methanic sediments of the Helgoland Mud Area (North Sea). When sulfate reduction was inhibited, different iron oxides facilitated AOM in long-term sediment slurry incubations but manganese oxide did not. Especially magnetite triggered substantial Fe-AOM activity and caused an enrichment of ANME-2a archaea. Methane oxidation rates of 0.095 ± 0.03 nmol cm d attributable to Fe-AOM were obtained in short-term radiotracer experiments. The decoupling of AOM from sulfate reduction in the methanic zone further corroborated that AOM was iron oxide-driven below the SMT. Thus, our findings prove that Fe-AOM occurs in methanic marine sediments containing mineral-bound ferric iron and is a previously overlooked but likely important component in the global methane budget. This process has the potential to sustain microbial life in the deep biosphere.

摘要

甲烷是一种强效温室气体,其从海床的通量在很大程度上受硫酸盐甲烷过渡带(SMT)中与硫酸盐还原耦合的甲烷厌氧氧化(AOM)过程(S-AOM)控制。据估计,S-AOM可氧化海洋沉积物中产生的90%的甲烷,该过程由厌氧甲烷氧化古菌(ANME)和硫酸盐还原细菌组成的共生体介导。另一个甲烷汇,即氧化铁耦合AOM(Fe-AOM),被认为在海洋沉积物的甲烷带中具有活性。SMT以下的地球化学特征,如高溶解铁、低至无法检测的硫酸盐和高甲烷浓度,以及氧化铁的存在,被视为该过程的先决条件。到目前为止,Fe-AOM在海洋沉积物中尚未得到证实,其关键控制微生物也未被确定。在此,我们采用多学科方法表明,Fe-AOM发生在黑尔戈兰泥区(北海)富含氧化铁的甲烷沉积物中。当硫酸盐还原受到抑制时,在长期沉积物浆液培养中,不同的氧化铁促进了AOM,但氧化锰没有。特别是磁铁矿引发了大量的Fe-AOM活性,并导致ANME-2a古菌富集。在短期放射性示踪实验中,归因于Fe-AOM的甲烷氧化速率为0.095±0.03 nmol cm⁻² d⁻¹。甲烷带中AOM与硫酸盐还原的解耦进一步证实,SMT以下的AOM是由氧化铁驱动的。因此,我们的研究结果证明,Fe-AOM发生在含有矿物结合三价铁的甲烷海洋沉积物中,是全球甲烷收支中一个先前被忽视但可能很重要的组成部分。这一过程有可能维持深海生物圈中的微生物生命。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54e9/6979488/cf743d418821/fmicb-10-03041-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验